

深圳市一众显示科技有限公司 SHEN ZHEN TEAM SOURCE DISPLAY TECH. CO, LTD.

n

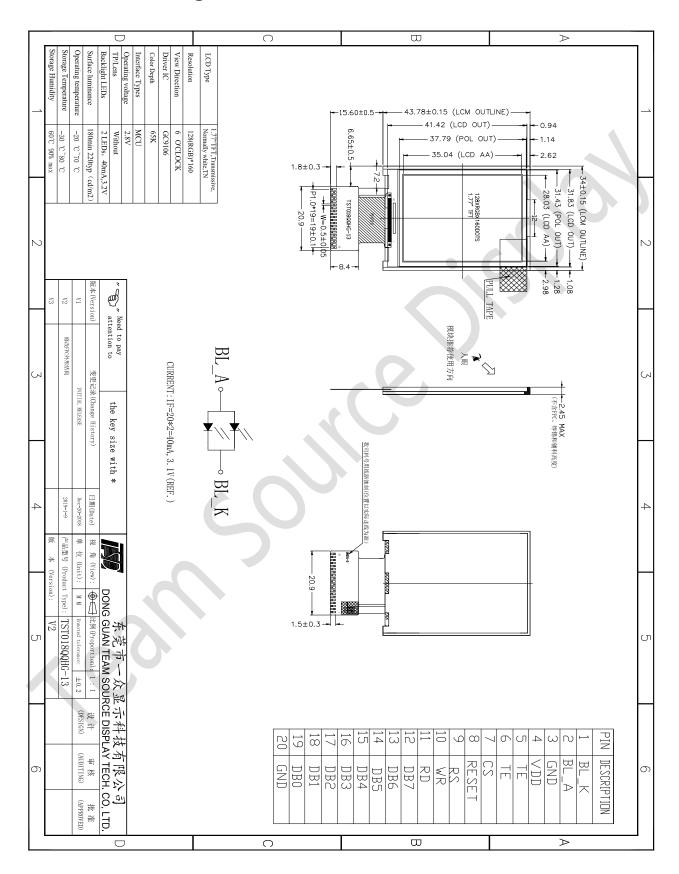
	Iodule		5 T 01	Specification 8QQHG-13
□ APPR	OVAL FOR	SPECIFICATION	ď	APPROVAL FOR SAMPLE
For Custo	mer's Acc	eptance:	- (2	
	Approved l	by		Comment
Team Sou	rce Display	:		
Preser	Presented by Reviewed b		ed by	Organized by
Version No.	Date	Content		Remark
	2019-1-24	Initial Relea		

CONTENTS

1 GENERAL CHARACTERISTICS	3 -
2 PRODUCT DRAWINGS	4 -
3 INTERFACE DESCRIPTION	5 -
4 TIMING CHARACTERISTICS	6 -
4.1 RESET TIMING	
4.2 DISPLAY PARALLEL 8-BIT INTERFACE TIMING CHARACTERISTICS (8080)	7 -
5 ABSOLUTE MAXIMUM RATINGS	
6 ELECTRICAL CHARACTERISTICS	9 -
7 BACKLIGHT CHARACTERISTICS	9 -
8 LCD OPTICAL SPECIFICATIONS	10 -
9 RELIABILITY TEST	12 -
10 SUGGESTIONS FOR USING LCD MODULES	13 -
10.1 HANDLING OF LCM	13 -
10.2 STORAGE	

Email: tslcd@tslcd.com

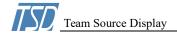
1 General Characteristics


ITEM	Specification	Unit
LCD Type	a-Si TFT,Transmissive,Normally white,TN	-
LCD Size	1.77	inch
Resolution (W x H)	128x (RGB) ×160	pixel
LCM size	34(H) x 43.78(V) x 2.45(D)	mm
Active Area	28.03 (H) x 35.04 (V)	mm
Pixel size	0.219(H)x 0.219(V)	mm
Viewing Direction	6 o'clock	
Gray Scale Inversion Direction	12 o'clock	
Color Depth	65K	
Pixel Arrangement	RGB-stripe	7
Backlight Type	2 LEDs, 40mA	-
Surface Treatment	Anti-Glare	-
Interface Type	MCU8-bit	-
Input Voltage	2.8	
With/Without TP	Without	
Weight	4	g

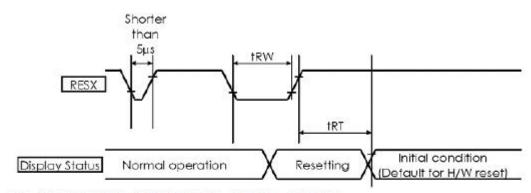
Note 1: RoHS compliant

Note 2: LCM weight tolerance: \pm 5%.

2 Product drawings



Email: tslcd@tslcd.com

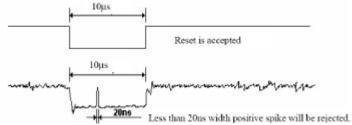

3 Interface description

PIN NO.	Symbol	description
1	BL_K	Backlight K Cathode input pin.
2	BL_A	Backlight A anode input pin.
3	GND	System Ground. (0V)
4	VDD	Power supply.
5-6	TE	Tearing effect output pin to synchronize MPU to frame writing, activated by S/W command.
7	CS	Chip select input pin ("Low" enable).
8	RESET	This signal will reset the device and must be applied to properly Signal is active low.
9	RS	This pin is used to select "Data or Command" in the parallel interface
10	WR	Write enable in 8080 MCU parallel interface.
11	RD	Read enable in 8080 MCU parallel interface.
12-19	DB7-DB0	Data bus.
20	GND	System Ground. (0V)

4 Timing Characteristics

4.1 Reset Timing

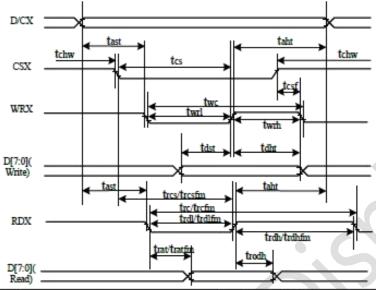
(VSS=0V, VDDI=1.65V to 1.95V, VCI=2.6V to 2.9V, Ta = -30 to 70℃)


Symbol	Parameter	Related Pins	MIN	TYP	MAX	Note	Unit
tRESW	*1) Reset low pulse width	RESX	10	. 78	191	7:	μs
	*2) Reset complete width	2	22	23	5	When reset applied during Sleep in mode	ms
tREST		2	22	25	120	When reset applied during Sleep out mode	ms

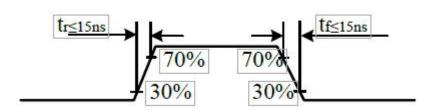
Note

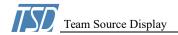
1. Spike due to an electrostatic discharge on RESX line does not cause system reset according to the table below

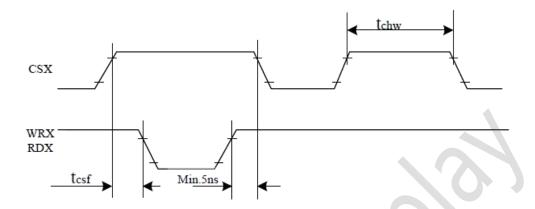
RESX Pulse	Action	
Shorten than 5µs	Reset Rejected	
Longer than 10µs	Reset	
Between 5µs and 10µs	Reset starts (It depends on voltage and temperature condtion.)	


- 2. During the resetting period, the display will be blanked (The display is entering blanking sequence, which maximum time is 120 ms, when Reset Starts in Sleep Out mode. The display remains the blank state in Sleep In mode) and then return to Default condition for Hardware Reset.
- 3. During Reset Complete Time, ID2 and VCOMOF value in OTP will be latched to internal register during this period. This loading is done every time when there is H/W reset complete time (tREST) within 5ms after a rising edge of RESX.
- 4. Spike Rejection also applies during a valid reset pulse as shown below:

5. It is necessary to wait 5msec after releasing RESX before sending commands. Also Sleep Out command cannot be sent for 120msec.




4.2 Display Parallel 8-bit Interface Timing Characteristics (8080)


Signal	Symbol	Parameter	max	min	Unit	Description
DCV	tast	Address setup time	0	-	ns	/
DCX taht		Address hold time(Write/Read)	0_		ns	
	tchw	CSX "H" pulse width	0	-	ns	
	tcs	Chip Select setup time(Write)	15	-)	ns	
CSX	trcs	Chip Select setup time(Read ID)	45	-	ns	
	tresfin	Chip Select setup time(Read FM)	355	-	ns	
	tcsf	Chip Select Wait time (Write/Read)	10	-	ns	
	twc	Write Cycle	66	-	ns	
WRX	twth	Write Control pulse H duration	15	-	ns	
	twrl	Write Control pulse L duration	15	-	ns	
	trcfm	Read Cycle (FM)	450	-	ns	
RDX(FM)	trdhfin	Read Control H duration(FM)	90	-	ns	
	trdlfin	Read Control L duration(FM)	355	-	ns	
	trc	Read Cycle (ID)	160	-	ns	
RDX(ID)	trdh	Read Control H pulse duration	90	-	ns	
	trdl	Read Control L pulse duration	45	-	ns	
	tdst	Write data setup time	10	-	ns	
	tdlht	Write data hold time	10	-	ns	For maximum CL=30p
D[7:0]	trat	Read access time	-	40	ns	For minimum CL=8pI
	tratfin	Read access time	-	340	ns	
	trod	Read output disable time	20	80	ns	

Note: Ta = -30 to 70 $^{\circ}$ C, VDDI=1.65V to 3.3V, VDD=2.5V to 3.3V, DGND=0V

CSX timings:

Note: Logic high and low levels are specified as 30% and 70% of VDDI for Input signals.

Write to read or read to write timings:

Note: Logic high and low levels are specified as 30% and 70% of VDDI for Input signals.

5 Absolute Maximum Ratings

PARAMETER	SYMBOL	MIN	MAX	UNIT
Power supply voltage	VDD	-0.3	4.6	V
Logic power supply voltage	IOVDD	-0.3	4.6	V
Operating Temperature	TOP	-20	+70	° C
Storage Temperature	TST	-30	+80	° C
Humidity	RH	-	90%(Max 60° C)	RH

6 Electrical Characteristics

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Power supply voltage	VDD	2.5	2.8	3.3	V
Logic power supply voltage	IOVDD	1.65	2.8	VDD	V
Input Current	IDD	-	TBD	-	mA

7 Backlight Characteristics

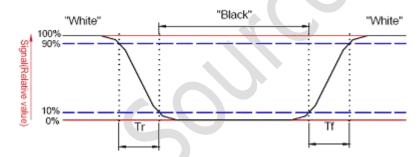
ITEM	SYMBOL	MIN	TYP	MAX	UNIT
Voltage for LED backlight	$V_{\rm f}$	2.9	3.1	3.3	V
Current for LED backlight	I_{f}	-	40	-	mA
Uniformity	Avg	80		-	%
LED Life Time	-	30000	40000	-	Hrs

Note:

- 1. The LED life time is defined as the module brightness decrease to 50% original brightness at Ta=25°C, 60%RH ± 5 %.
- 2. The life time of LED will be reduced if LED is driven by high current, high ambient temperature and humidity conditions.
- 3. Typical operating life time is an estimated data.
- 4. Permanent damage to the device may occur if maximum values are exceeded or reverse voltage is loaded .Functional operation should be restricted to the conditions described under normal operating conditions.

<u>- 9 .</u>

Website: www.tslcd.com/www.lcdlcm.com


8 LCD Optical specifications

Itam	Symb	Condition	Specification			Unit	Damauly
Item	ol	Condition	Min	Тур	Max	Unit	Remark
Response time (By Quick)	Tr+Tf	-	-	8	16	ms	Note 2
Contrast ratio	CR	-	400	500	-	-	Note 3
Surface luminance	Lv	θ= 0°	180	220	-	Cd/m ²	Note 4
Luminance uniformity	Yu	θ= 0°	80	-	-	%	Note 6
NTSC	-	θ= 0°	45	50	-	%	Note 6
	Тор	CR ≥ 10	10	20	-		
Viewing angle	Bottom	CR ≥ 10	35	45	-	Deg.	Note 7
Viewing angle	Left	CR ≥ 10	35	45	-		Note /
	Right	CR ≥ 10	35	45	- (
CIE(x,y)	Wx	θ= 0°	-0.03	0. 27	+0.03		Note 5
chromaticity	Wy	0-0	-0.03	0. 28	70.03		Note 5

Note 1: Ambient temperature = 25° C.

Note 2: Definition of response time:

The output signals of TRD-100 are measured when the input signals are changed to "White" (falling time) and from "White" to "Black" (rising time), respectively. The interval is between the 10% and 90% of amplitudes. Refer to figure as below.

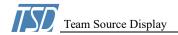
Note 3: Definition of contrast ratio:

Contrast ratio is calculated by the following formula.

Contrast ratio (CR)= Brightness on the "white" state
Brightness on the "black" state

Measured at the center area of the LCD.

Note 4:Definition of surface luminance


Surface luminance is the luminance with all pixels displaying white

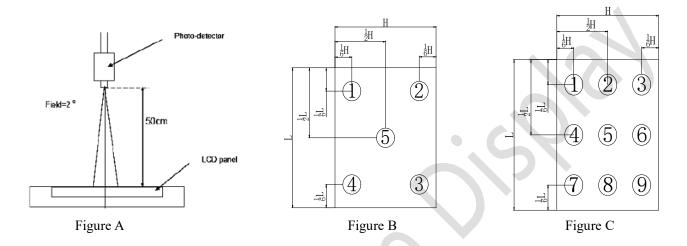
Note 5: For contrast ratio, Surface Luminance, Luminance uniformity and CIE, the testing data is base on TOPCON's BM-7 photo detector or compatible.

Size: $S \le 4.3$ " (see Figure A B)

H,V: Active area

Light spot size=7.7mm (BM-7)50cm distance or compatible distance from the LCD surface to detector lens. test spot position : see Figure B.

measurement instrument: TOPCON's luminance meter BM-7 or compatible.


Size: $4.3 < S \le 12.3$ " (see Figure A C)

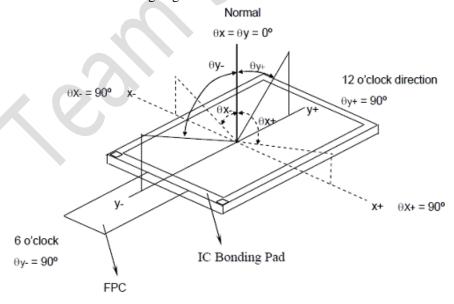
H,V: Active area

Light spot size=7.7mm (BM-7)50cm distance or compatible distance from the LCD surface to detector lens.

test spot position : see Figure C.

measurement instrument: TOPCON's luminance meter BM-7 or compatible.

Note 6:Definition of Luminance Uniformity


Active area is divided into 5 or 9 measuring areas, Every measuring point is placed at the center of each measuring area

Bmax: The measured maximum luminance of all measurement position.

Bmin: The measured minimum luminance of all measurement position.

Luminance Uniformity (Yu)= (Bmin/Bmax)x100%

Note 7: Definition of viewing angle

RELIABILITY TEST

NO.	TEST ITEM	TEST CONDITION	INSPECTION AFTER TEST
1	High Temperature	80±2°C/96 hours	
	Storage		
2	Low Temperature	-30±2°C/96 hours	
	Storage	-30±2 C/70 Hours	
3	High Temperature	70 2°C/06 h ayura	_
3	Operating	70±2°C/96 hours	Inspection after 2~4 hours storage at
4	Low Temperature	20 20 0 / 0 (1	room temperature and humidity. The
4	Operating	-20±2°C/96 hours	condensation is not accepted. The
	T	-30±2°C ~ 25~ 80± 2°C × 10 cycles	sample shall be free from defects:
5	Temperature Cycle	(30 min.) (5min.) (30min.)	
6	Damp Proof Test	60°C ±5°C × 90%RH/96 hours	1. Air bubble in the LCD
		Frequency 10Hz~55Hz	2. Seal leak
	771 / T	Stroke: 1.5mm	3. Non-display
7	Vibration Test	Sweep: 10Hz~150 Hz~10Hz 2 hours	4. Missing segments
		For each direction of X, Y, Z	5. Glass crack
0	D 1' D T	Height: 50 cm	
8	Packing Drop Test	1 corner, concrete floor	
	Electrostatio	C=150pF, R=330 Ω	
9	Electrostatic	Air: $\pm 8KV\ 150pF/330\Omega\ 30$ times	
	Discharge Test	Contact: ±4KV,20 times	

<u>-12-</u> Website: www.tslcd.com/www.lcdlcm.com

10 Suggestions for using LCD modules

10.1 Handling of LCM

- 1. The LCD screen is made of glass. Don't give excessive external shock, or drop from a high place.
- 2. If the LCD screen is damaged and the liquid crystal leaks out, do not lick and swallow. When the liquid is attach to your hand, skin, cloth etc, wash it off by using soap and water thoroughly and immediately.
- 3. Don't apply excessive force on the surface of the LCM.
- 4. If the surface is contaminated, clean it with soft cloth. If the LCM is severely contaminated, use Isopropyl alcohol/Ethyl alcohol to clean. Other solvents may damage the polarizer. The following solvents is especially prohibited: water, ketone Aromatic solvents etc.
- 5. Exercise care to minimize corrosion of the electrode. Corrosion of the electrodes is accelerated by water droplets, moisture condensation or a current flow in a high-humidity environment.
- 6. Install the LCD Module by using the mounting holes. When mounting the LCD module make sure it is free of twisting, warping and distortion. In particular, do not forcibly pull or bend the I/O cable or the backlight cable.
- 7. Don't disassemble the LCM.
- 8. To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
- Be sure to ground the body when handling the LCD modules.
- Tools required for assembling, such as soldering irons, must be properly grounded.
- To reduce the amount of static electricity generated, do not conduct assembling and other work under dry conditions.
- The LCD module is coated with a film to protect the display surface. Exercise care when peeling off this protective film since static electricity may be generated.
- 9. Do not alter, modify or change the shape of the tab on the metal frame.
- 10. Do not make extra holes on the printed circuit board, modify its shape or change the positions of components to be attached.
- 11. Do not damage or modify the pattern writing on the printed circuit board.
- 12. Absolutely do not modify the zebra rubber strip (conductive rubber) or heat seal connector
- 13. Except for soldering the interface, do not make any alterations or modifications with a soldering iron.
- 14. Do not drop, bend or twist LCM.

10.2 Storage

- 1. Store in an ambient temperature of 5 to 45 C, and in a relative humidity of 40% to 60%. Don't expose to sunlight or fluorescent light.
- 2. Storage in a clean environment, free from dust, active gas, and solvent.
- 3. Store in antistatic container.

