Customer's Name: 客户名称: Spec.No.: DY-R16S48280A-002 Item Coding: Ver: A2 Date: 2025-07-23 # Shenzhen Deriy New Energy Technology Co., Ltd 深圳市德瑞锂新能源科技有限公司 # Specification For Approval 客户承认书 Specifications: DY-R16S48280A-51.2V 280Ah 规格: DY-R16S48280A-51.2V 280Ah | Approval | Checked | Draft | |----------|---------|-------| | | | | | Customer | | | | Approval | | | # Product Specification History of specification # 规格书修订记录 | Date | Contents | Remarks | |-----------|----------|---------| | 2024-6-06 | 首次发行 | | | 2025-7-23 | 外观升级 | # Contents 目录 | 1. Scope 适用范围 | 4 | |---|----| | 2. Main specifications 主要技术参数 | 4 | | 2.1 Cell Battery specifications(电芯技术参数) | 4 | | 2.2 Battery Pack specifications(电池组技术参数) | 5 | | 3. Battery Management System Specification 电池管理系统规范 | 6 | | 3.1 BMS function introduction(BMS 功能介绍) | 6 | | 3.2 BMS Protect parameter (电池管理系统保护参数) | 6 | | 4. Appearance and structural dimensions 外观结构尺寸 | 7 | | 5. Case Structure of Battery Pack 电池组面板结构定义 | 8 | | 6. Connection mode for parallel communication(并机通讯联接) | 9 | | 7. Packaging of Battery Pack(电池组包装) | 9 | | 8. Battery test equipment 电池测试设备 | 11 | | 8.1 Di mension Measuring Instrument 尺寸测量仪器 | 11 | | 8.2 Voltmeter 电压表 | 11 | | 8.3 Ammeter 电流表 | 11 | | 8.4 Impedance Meter 内阻测试仪 | 11 | | 9. Standard Test Condition 标准测试条件 | 11 | | 10.Storage and Others 贮存及其它事项 | 11 | | 10.1 Long Time Storage 长期贮存 | 11 | | 10.2 Others 其它事项 | 12 | | 11.Amendment of this Specification 产品规格书的修订 | 12 | | 12.Appendix 1 附录 1 | 12 | | 13 Annendix 2 BMS Specification 附录 2 | 15 | # 1. Scope 适用范围 The specification shall be applied to LiFePO4 rechargeable battery pack Of DY-R16S48280A-51.2V 280Ah which is manufactured by Shenzhen Deriy New Energy Technology Co., Ltd. 本规格书适用于深圳市德瑞锂新能源科技有限公司生产的 DY-R16S48280A-51.2V 280Ah 磷酸铁锂锂离子可充电电池. # 2. Main specifications 主要技术参数 ## 2.1 Cell Battery specifications (电芯技术参数) | | No.
(序号) | Item
(项目) | General P
(常规 | | Remark
(备注) | |------|------------------|--|--|--|---| | | 1 | Rated Capacity | Typical
(标称容量) | 280Ah | Standard discharge (0.2C5A) after Standard charge | | | | (额定容量) | Capacity Range
(容量范围) | 280~310Ah | (标准充电后 0.2CsA 标准放电) | | | 2 | Nominal Voltage
(正常电压) | 3.2 | 2.V | Mean Operation Voltage
(即工作电压) | | | 3 | Internal
Impedance
(内阻) | ≤0.20 mΩ | | Internal resistance measured at AC 1KHz after 50% charge (半电态下用交流法测量内阻) The measure must uses the new batteries that within one week after shipment and cycles less than 5 times (使用出货后不到一个星期及循环次数少于 5 次的新电池测量) | | Cell | 4 Dimension (尺寸) | | Thickness/厚度
Width/宽度: M
Height/高度: 1 | Max 174.5mm | Initial Dimension
(初始尺寸) | | | 5 | Weight (重量) | 5.4: | 5kg | APPROX | | 単体电芯 | 6 | Standard charge
(标准充电) | Constant Curr
Constant Vo
0.02CsA
(持续电流
持续电压
截止电流: | ltage 3.65V
cut-off
: 0.5CsA
: 3.65V | Charge time : Approx2.0h | | | 7 | Rapid Charge
快速充电 | Constant Cu
Constant Vo
0.01CsA
(持续电源
持续电压
截止电流: | rrent 1CsA
ltage 3.65V
cut-off
i: 1CsA
: 3.65V | Charge time : Approx1.0h@≥10°C | | | 8 | Standard
discharge
(标准放电) | Constant curre
end volta
(持续电流
截止电压: | ge 2.5 V
: 0.5C5A | 140A | | | 9 | Maximum
discharge current
最大放电持续电流 | Constant current: 1CsA
end voltage: 2.5 V
(持续电流 1CsA 截止电压: 2.5V) | | 280A@≧0°C | # 2.2 Battery Pack specifications (电池组技术参数) | | No.
(序号) | Item
(项目) | General Pa
(常规参 | | Remark
(备注) | |---------|-------------|---|---|---------------------|--| | | 1 | Combination method
(组合方式) | 16 | S1P | | | | 2 | Rated Capacity | Typical
(标称容量) | 280Ah | Standard discharge after Standard charge
package)(标准充电后标准放电(针对电池 | | | | (额定容量) | Minimum
(最小容量) 278Ah | | 组)) | | | 3 | Factory Voltage
(出厂电压) | 51V-53.0V(40-60%) | | Mean Operation Voltage
(即工作电压) | | | 4 | Voltage at end of
Discharge
(放电终止电压) | 41.6 | V | Discharge Cut-off Voltage
(放电截止电压) | | | 5 | Charging Voltage
(充电电压) | 53-58 | 8.4V | | | Package | 6 | Internal Impedance
(内阻) | ≤10mΩ | | Internal resistance measured at DC
after 50% charge
(半电态下测量直流内阻) | | 电池组 | 7 | Standard charge
(标准充电) | Constant Current 56A(0.2C) Constant Voltage see No.5 0.02CA cut-off (持续电流: 56A(0.2C) 持续电压: 见序号 5 截止电流: 0.02CA) | | Charge time : Approx 5 h
(充电时间: 大约 5 个小时) | | | 8 | Standard discharge
(标准放电) | Constant curr
end voltage
(持续电》
截止电压: リ | see NO.4
記: 140A | | | | 9 | Maximum Continuous
Charge Current
(最大持续充电电流) | 200. | | ≥10°C | | | 10 | Maximum Continuous
Discharge Current
(最大持续放电电流) | 200. | A | ≥10°C | | | 11 | Operation Temperature
Range
(工作温度范围) | Charge (充电): 0~45℃ Discharge (放电): -20~55℃ | | 60±25%R.H.
Bare Cell
(单体电池储存湿度范围) | | | 12 | Storage Temperature
Range
(储存温度范围) | Less than 12 months: -10~35°C (小于 12 月: -10~35°C) less than 3 months: -10~45°C (小于 3 个月: -10~45°C) Less than 7 day: -20~65°C (小于 7 天: -20~65°C) | | 60±25%R.H.
at the shipment state
(出货状态时的湿度范围) | | | 13 | Dimensions (尺寸) | 880*450*270 | | Include Roller Wheel | | | 14 | Weight (重量) | Approx: | 120kg | | ## 3. Battery Management System Specification 电池管理系统规范 ## 3.1 BMS function introduction (BMS 功能介绍) 1): The BMS is designed for 16 series lithium battery. (BMS 为 16 串锂离子电池设计) 2): The BMS have all functions which are: (该 BMS 系统具有以下一些功能) overcharge detection function (过充电保护功能) over discharge detection function (过放电保护功能) over current detection function (过电流保护功能) short detection function (短路保护功能) Temperature detection function (温度保护功能) balance function (均衡功能) communicate function (通讯功能) Alarm function (告警功能) Total capacity function (总容量功能) Storage history function (存储历史记录功能) ## 3.2 BMS Protect parameter (电池管理系统保护参数) BMS technical data attached at appendix 2. BMS 技术参数详见附录 2. Type 型号: JK-PB2A16S20P # 4. Appearance and structural dimensions 外观结构尺寸 There shall be no such defect as scratch, bur and other mechanical scratch, and the connector should be no rust dirt. The structure and dimensions see attached drawing of the battery. 电池的表面应无明显的划痕毛刺及其其它机械划伤,外露的金属端子应无锈蚀污垢。结构尺寸见电池的外形尺寸图; | Model : Roller Wheel Type- White | | | | | | | | | |----------------------------------|-------------------|--|------|-----------------------|----|--|--|--| | L(长度) | 450mm | 450mm W(宽度) 270mm H(高度) 880mm | | | | | | | | Wheel Height
滚轮高度 | 90mm | Terminal Height
端子高度 | 16mm | Terminal type
端子型号 | M8 | | | | | Screen
显示屏 | Size:3.2inch (100 | size:3.2inch (100*60mm included frame) | | | | | | | # 5. Case Structure of Battery Pack 电池组面板结构定义 | No. | Description | Silk-screen | Remark | |-----|--------------|-------------|-----------------------| | 1 | Switch LED | | Switch indicator | | 2 | Reset | RST | For reset the battery | | 3 | LED | RUN | Operation indicator | | 4 | LED | ALM | Alarm indicator | | 5 | Dial switch | ADD | Set the address | | 6 | LED | SOC | Capacity indicator | | 7 | LED | Link | | | 8 | DRY port | DRY | | | 9 | RS485 port | RS485/CAN | RS485 communication | | 10 | CAN port | CAN | CAN communication | | 11 | RS232 port | RS232 | RS232 communication | | 12 | RS485 port | RS485 | RS485 communication | | 13 | Air Switch | | Fuses | | 14 | LCD Screen | | | | 15 | Switch | ON/OFF | | | 16 | Input/Output | P- | Input/Output terminal | | 17 | Input/Output | P+ | Input/Output terminal | ## 6. Connection mode for parallel communication (并机通讯联接) ## 6.1 RS485 Parallel Communication (RS485 并机通讯模式) While in RS485 parallel communication, dial-up addresses of battery module are 1,2,3,4.....14,15; By this method, we can be allowed to read each data depending on battery module. Any battery other than address 0 can be connected to the host computer; FF polling mode used as consulting mode. 在 RS485 并机通信时,电池模块的拨号地址为 1,2,3,4 14,15;通过这种方法,我们可以根据电池模块读取每个数据。 地址 0 以外的任何电池都可以连接到主机; FF 模式为轮巡查询模式。 Note: RS485 communication address can not be 0, the address set by the host computer is required to be the same as the battery communication address, do not have duplicate addresses, otherwise communication may be affected. ## 6.2 Address Switch function (Only in Parallel) (地址设置) # 7. Packaging of Battery Pack(电池组包装) Wooden Carton 木箱包装尺寸: Carton size: 970*540*470mm Gross weight: 135.6Kg ## 8. Battery test equipment 电池测试设备 ## 8.1 Dimension Measuring Instrument 尺寸测量仪器 The dimension measurement shall be implemented by instruments with equal or more precision scale of 0.1mm. 测量尺寸的仪器的精度应不小于 0.1mm ## 8.2 Voltmeter 电压表 Standard class specified in the national standard or more sensitive class having inner impedance not less than 10 $K\Omega/V$. 国家标准或更灵敏等级,内阻不小于 10 KΩ/V. ## 8.3 Ammeter 电流表 Standard class specified in the national standard or more sensitive class. Total external resistance including ammeter and wire is less than 0.01Ω . 国家标准或更灵敏等级,外部总体内阻包括电流表和导线应小于 0.01Ω. ## 8.4 Impedance Meter 内阻测试仪 Impedance shall be measured by a sinusoidal alternating current method(AC 1kHz LCR meter). 内阻测试仪测试方法为交流阻抗法(AC 1kHz LCR). ## 9. Standard Test Condition 标准测试条件 Test should be conducted with new batteries within one month after shipment from our factory and
the cells shall not be cycled more than five times before the test. Unless otherwise defined, test and measurement shall be done under temperature of 23±2°C and relative humidity of less 75%.,air 86Kpa~106Kpa. 测试电池必须是本公司出厂时间不超过一个月的新电池,且电池未进行过五次以上充放电循环。除非其它特殊要求,本产品规格书规定的测试的环境条件为:温度 23±2℃,相对湿度 ≤75%,气压 86Kpa~106Kpa. Unless otherwise defined, 30min,rest period after charge,30min,rest period after discharge. 如无特殊要求,电池充放电间隔为 30min。 # 10. Storage and Others 贮存及其它事项 ## 10.1 Long Time Storage 长期贮存 If stored for a long time(don't used,exceed three months), the cell should be stored in drying and cooling place. The cell's storage voltage should be 51.2V-54.4V and the cell is to be stored in a condition that the temperature of 23±2℃ and the humidity 0f 45%-75%. Long-term use of unused batteries to recharge every 3 months. Ensure that the battery voltage is within the above range. 长期贮存的电池(未使用,超过3个月)须置于干燥、凉爽处。贮存电压为51.2V-54.4V。储存于23±2℃,湿度为45%-75%的洁净环境。长期搁置未使用电池每3个月补电一次,确保电池电压在上述范围内。 ## 10.2 Others 其它事项 Any matters that this specification does not cover should be conferred between the customer and Deriy 任何本规格书中未提及的事项, 须经双方协商确定 ## 11. Amendment of this Specification 产品规格书的修订 This specification is subject to change with prior notice. 本公司有权对本产品规格书进行修订。 ## **12**. Appendix 1 附录 1 #### **Handling Precautions and Guideline** ## For Li-ion Rechargeable Batteries 锂离子充电电池操作指示及注意事项 #### Preface 前言 This document of 'Handling Precautions and Guideline Li-ion Rechargeable Batteries' shall be applied to the battery cells manufactured by Deriy 本檔"锂离子充电电池操作指示及注意事项"仅适用于深圳市德瑞锂新能源科技有限公司生产电池。 Note (1) : 声明一 The customer is requested to contact Shenzhen Deriy New Energy Technology Co., Ltd.. in advance, if and when the customer needs other applications or operating conditions than those described in this document. Additional experimentation may be required to verify performance and safety under such conditions. 客户若需要将电池用于超出本规格书规定以外的设备,或在本规格书规定以外的使用条件下使用电池,应事先联系深圳市德瑞锂新能源科技有限公司,因为需要进行特定的实验测试以核实电池在该使用条件下的性能及安全性。 Shenzhen Deriy New Energy Technology Co., Ltd will take no responsibility for any accident when the cell is used under other conditions than those described in this Document. ## Note (2) : 声明二 对于在超出本规格书规定以外的条件下使用电池而造成的任何意外事故,深圳市德瑞锂新能源 科技有限公司概不负责。 Note (3): 声明三 Shenzhen Deriy New Energy Technology Co., Ltd will inform, in a written form, the customer of improvement(s) regarding proper use and handling of the cell, if it is deemed necessary. 如有必要,深圳市德瑞锂新能源科技有限公司会以书面形式告知客户有关正确操作使用电池的 改进措施。 #### Danger! **危** 险 - Do not immerse the battery in water or allow it to get wet. - 勿将电池投入水中或将其弄湿! - Do not use or store the battery near sources of heat such as a fire or heater. - 禁止在火源或极热条件下给电池充电! 勿在热源 (如火或加热器) 附近使用或贮存电池! 如果电池泄漏或发出异味, 应立即将其从接近明火处移开; - Do not use any chargers other than those recommended by Deriy. - 一 请使用专用充电器! - Do not reverse the positive(+) and negative(-) terminals. - 勿将正负极接反! - Do not connect the battery directly to wall outlets or car cigarette-lighter sockets. - 勿将电池直接连接到墙上插座或车载点烟式插座上! - Do not put the battery into a fire or apply direct heat to it. - 一 勿将电池投入火中或给电池加热! - Do not short-circuit the battery by connecting wires or other metal objects to the positive(+) and negative(-) terminals. - 禁止用导线或其它金属物体将电池正负极短路,禁止将电池与项链、发夹或其它金属物体一起运输或贮存! - Do not pierce the battery casing with a nail or other sharp object, break it open with a hammer, or step on it. - 禁止用钉子或其它尖锐物体刺穿电池壳体,禁止锤击或脚踏电池! - Do not strike, throw or subject the battery to sever physical shock. - 禁止撞击、投掷或者使电池受到机械震动 - Do not directly solder the battery terminals. - 一 禁止直接焊接电池端子! - Do not attempt to disassemble or modify the battery in any way. - 一 禁止以任何方式分解电池! - Do not place the battery in a microwave oven or pressurized container. - 一 禁止将电池置入微波炉或压力容器中! - Do not use the battery in combination with primary batteries(such as dry-cell batteries) or batteries of different capacity, type or brand. - 一 禁止与一次电池 (如干电池) 或不同容量、型号、品种电池组合使用! - —Do not use the battery if it gives off an odor, generates heat, becomes discolored or deformed, or appears abnormal in any way. If the battery is in use or being recharged, remove it from the device or charger immediately and discontinue use. - 如果电池发出异味、发热、变形、变色或出现其它任何异常现象时不得使用;如果电池正在使用或充电,应立即从用电器中或充电器上取出并停止使用! #### Caution! 注意! Do not use or store the battery where is exposed to extremely hot, such as under window of a car in direct sunlight in a hot day. Otherwise, the battery may be overheated. This can also reduce battery performance and/or shorten service life. 不要使用处于极热环境中的电池,如阳光直射或热天的车内。否则,电池会过热,可能着火(点燃),这样就会影响电池的性能、缩短电池的使用寿命。 If the battery leaks and electrolyte gets in your eyes, do not rub them. Instead, rinse them with clean running water and immediately seek medical attention. If left as is, electrolyte can cause eye injury. 如果电池漏液后电解液进入眼睛,不要擦,应用水冲洗,立即寻求医疗救助。如不及时处理, 眼睛将会受到伤害。 # 13. Appendix 2 BMS Specification 附录 2 BMS 规格 Type 型号: JK-PB2A16S20P # **Energy storage battery BMS** **JK-PB1A16S10P** **JK-PB1A16S15P** JK-PB2A16S15P JK-PB2A16S20P Specification and operation manual | Technical Index | Product model | | | | | | | | | |---|---------------|----------------|--------------------|---------------|--|--|--|--|--| | rechnical Index | JK-PB1A16S10P | JK-PB1A16S15P | JK-PB2A16S15P | JK-PB2A16S20P | | | | | | | Li-ion | | 7~ | 16S | | | | | | | | Lifepo4 | | 8~ | -16S | | | | | | | | LTO | | 14S | | | | | | | | | Balance Method | | Active | Balance | | | | | | | | Balance Current | 1A | 1A | 2A | 2A | | | | | | | Main Circuit conduction internal | 1mΩ | 0.65mΩ | 0.65mΩ | 0.47mΩ | | | | | | | Continuous Discharge Current Maximum | 100A | 150A | 150A | 200A | | | | | | | Discharge Current | 200A | 300A | 300A | 350A | | | | | | | Over Charge
Protection Current(
Adjustable) | 10~100A | 10~150A | 10~150A | 10~200A | | | | | | | Other Interfaces
(Customized) | | RS232/RS | S485/CAN | | | | | | | | Display interface | | Y | 'es | | | | | | | | Wiring Output | | Comm | non Port | | | | | | | | Single Cell Voltage
Range | | 1- | -5V | | | | | | | | Voltage Acquistion | | ±5 | i <mark>m</mark> V | | | | | | | | Over Charge
Protection Voltage | | 1.2-4.35V | Adjustable | | | | | | | | Over Charge Relese
Voltage | | 1.2-4.35V | Adjustable | | | | | | | | Over Current
Detect Delay | | 2-120S A | Adjustable | | | | | | | | Over Discharge
Protection Voltage | | 1.2-4.35V | Adjustable | | | | | | | | Over Discharge
Relese Voltag | | 1.2-4.35V | Adjustable | | | | | | | | Quantity of
Temperature
Detection | | 4 | Pcs | | | | | | | | Temp Protection | | Υ | 'es | | | | | | | | Short Circuit protection | | Y | 'es | | | | | | | | Coulomb Counter | | Y | 'es | | | | | | | | UPGRADE | | Y | 'es | | | | | | | | Operation,alarm,an
d power indication | Yes | | | | | | | | | | Bluetooth Function | | Support for An | droid/IOS phone | | | | | | | | Parallel charging current limiting | 10A | | | | | | | | | | Address dial switch | | 4 d | ligits | | | | | | | | DRY CONTACT | | 2 gr | roups | | | | | | | ## 1. Overview With the rapid growth of the renewable energy storage market, the demand for battery management systems is increasing. This product is an intelligent lithium battery protection board for energy storage applications. It adopts precise detection technology to protect the energy storage battery from overcharging, discharging, and overcurrent, ensuring the safe and reliable operation of the energy storage system. At the same time, advanced active voltage balancing function is integrated, which can monitor the voltage of each battery cell in real-time, and improve the service life of the battery pack through active balancing management. This product provides intelligent battery protection solutions for a wide range of energy storage applications. ## 2. Functional characteristics - With active balancing function - APP remote operation - Support PC upper computer operation Information screen display - Information screen display - High precision voltage acquisition - High precision current collection - Isolate power circuits - •4-way temperature detection protection MOS temperature detection protection - LED status indication - Overvoltage and overcurrent protection - Support RS485 CAN RS232 communication - Battery capacity estimation - Accurate time logging - Short circuit protection ## 3. Functional schematic diagram ## 4. Environmental conditions for use | Test items | parameter | unit | |---------------------------|-----------|------| | operation temperature | -30~70 | °C | | storage temperature | -30~70 | °C | | Working humidity | 10~80 | %RH | | Storage Humidity | 10~85 | %RH | | Power supply pressure | 20~70 | V | | Working power consumption | 19mA@58V | | # **5. Specification parameters** | NO | Inc | dicator items | Factory
default
parameters | ls it
possible to
set | Notes | | |----|----------------------------|--|----------------------------------|-----------------------------|---------------------------|--| | | | Supports batteries | li-ion,
lifepo4, LTO | Yes | | | | 1 | Number of strings | Support string count | 7~16、8~16
、14~16 | Yes | | | | | | Equalizing trigger voltage
difference voltage | 10mV | Yes | | | | 2 | Individual | Individual overcharging protection voltage | 3600mV | Yes | | | | | overcharging
protection | Single overcharge recovery voltage | 3550mV | Yes | | | | | | Individual undervoltage protection voltage | 2600mV | Yes | | | | 3 | Individual
undervoltage | Single unit undervoltage recovery voltage | 2650mV | Yes | | | | | protection | Single unit undervoltage automatic shutdown voltage | | 2500mV | Yes | | | | | Equalizing voltage
difference triggering
voltage | 10mV | Yes | All
parameters | | | 4 | Active balancing function | Balanced starting working voltage | 3000mV | Yes | are lifepo4
parameters | | | | | Maximum balanced current | 1A | Yes | | |
| | | Maximum charging current | 25A | Yes | | | | | Overall | Charging overcurrent delay | 2s | Yes | | | | 5 | overcharge (| Charging overcurrent alarm cleared | 60s | Yes | | | | | | Charging overcurrent
limiting current | 10A | No | | | | | O vo so II | maximum discharge current | 150A | Yes | | | | 6 | Overall overvoltage | Discharge overcurrent delay | 300s | Yes | | | | | protection | Discharge overcurrent
alarm cleared | 60s | Yes | | | | | | Short circuit protection current | 300A | No | | | | 7 | Short circuit protection | Short circuit protection delay | 20us | Yes | | | | | p. 30000011 | Short circuit protection released | 60s | Yes | | | | | | Charging over temperature protection | 70°C | Yes | | | |---|---------------------------|--|-------|--------|----------------------------------|--| | | | Charging over temperature recovery | 60°C | Yes | | | | | | Discharge over temperature protection | 70°C | Yes | | | | | | Discharge over temperature recovery | 60°C | °C Yes | | | | 8 | temperature
protection | during charging | | Yes | All
parameters
are lifepo4 | | | | | Low temperature recovery during charging | 10°C | Yes | parameters | | | | | MOS over temperature protection | 100°C | Yes | | | | | | MOS over temperature recovery 80°C | | Yes | | | | | | Battery alarm temperature | 60°C | Yes | | | | | | Battery alarm recovery | 50°C | Yes | | | ## 6. LED indication instructions # Led working status indication | state | Normal/Alarm/Protection | ON/OFF | RUN | ALM | Battery indicator LED | | | | | | |--------------|---|----------|----------|----------|--------------------------------|----------|-------------|---------------|----------|----------| | Shutdown | normal | turn off | balanced | normal | turn on | turn on | turn off | | Base | ed on batte | ery level dis | splay | | | | normal | turn on | turn on | turn off | | Base | ed on batte | ery level dis | splay | | | charge | Over current/over temperature/over voltage/ charging failure | turn on | turn on | flicker | Based on battery level display | | | | | | | | normal | turn on | turn on | turn off | | Base | ed on batte | ery level dis | splay | | | discharge | Overcurrent/ over temperature/ under voltage/ discharge failure | turn on | turn on | flicker | Based on battery level display | | | | | | | Other alarms | Password not
modified/short
circuited/temperature
abnormal | turn on | turn on | flicker | Based on battery level display | | | | | | ## Capacity indication instructions | State | | | Charge | | | Discharge | | | | | | | | |--------------------------|------------|----------|----------|----------|----------|-----------|---------|----------|----------|----------|----------|----------|---------| | Capacity indicator light | | L6 | L5 | L4 | L3 | L2 | L1 | L6 | L5 | L4 | L3 | L2 | L1 | | | 0~16.6% | turn off | turn on | turn off | turn on | | | 16.6~33.2% | turn off | turn off | turn off | turn off | turn on | turn on | turn off | turn off | turn off | turn off | turn on | turn on | | | 33.2~49.8% | turn off | turn off | turn off | turn on | turn on | turn on | turn off | turn off | turn off | turn on | turn on | turn on | | electricity (%) | 49.8~66.4% | turn off | turn off | turn on | turn on | turn on | turn on | turn off | turn off | turn on | turn on | turn on | turn on | | | 66.4~83.0% | turn off | turn on | turn off | turn on | | | 83.0~100% | turn on ## 7. Switching on/off instructions Can be done by pressing the button. In the shutdown state, press the button to turn on the device. When turned on, press and hold the button for more than 3 seconds to turn off the device. ## 8. Communication instructions ## 8.1 RS232 communication Bms can communicate with the upper computer through the RS232 interface, thereby monitoring various battery information, including battery voltage, current, temperature, status, and battery production information, with a default baud rate of 9600bps. ## 8.2 CAN communication The default communication speed for CAN communication is 250k. ## 8.3 RS485 communication There are two RS485 communication interfaces, one of which outputs two interfaces in parallel for viewing battery pack information, with a default baud rate of 115200. By setting the dial switch to set the communication address, it is possible to poll and query the data of all battery packs, with an address setting range of 0-15. ## 8. 4 DIP switch settings When multiple battery packs are used in parallel, the battery packs need to be set to different addresses through a dial switch for normal use. The following dial switch address table. | Address | | Dial switch posit | tion | | |---------|-----|-------------------|------|-----| | d . | 1 | 2 | 3 | 4 | | 0 | OFF | OFF | OFF | OFF | | 1 | ON | OFF | OFF | OFF | | 2 | OFF | ON | OFF | OFF | | 3 | ON | ON | OFF | OFF | | 4 | OFF | OFF | ON | OFF | | 5 | ON | OFF | ON | OFF | | 6 | OFF | ON | ON | OFF | | 7 | ON | ON | ON | OFF | | 8 | OFF | OFF | OFF | ON | | 9 | ON | OFF | OFF | ON | | 10 | OFF | ON | OFF | ON | | 11 | ON | ON | OFF | ON | | 12 | OFF | OFF | ON | ON | | 13 | ON | OFF | ON | ON | | 14 | OFF | ON | ON | ON | | 15 | ON | ON | ON | ON | ## 9. Interface Definition # Definition of dry contact interface | Pin number | Pin Definition | Notes | | | | |------------|----------------|---|--|--|--| | 1 | COM1 | S1 and COM1 conduct under alarm conditions | | | | | 2 | S1 | 31 and Colvit Conduct under alarm conditions | | | | | 3 | COM2 | \$2 and COM2 conduct under low battery conditions | | | | | 4 | S2 | S2 and COM2 conduct under low battery conditions | | | | ## CAN and RS485-1 interface definition | RS485- adopts | 8P8C vertical RJ45 socket | CAN - adopts 8P8C vertical RJ45 socket | | | |---------------|---------------------------|--|----------------|--| | Pin number | Pin Definition | Pin number | Pin Definition | | | 1、8 | RS485 - B1 | 9、10、11、14、16 | NC | | | 2、7 | RS485-A1 | 12 | CANL | | | 3、6 | GND | 13 | CANH | | | 4、5 | NC | 15 | GND | | ## RS232 interface definition | RS232 adopts 6P6C vertical RJ11 socket | | | | | |--|----------------|------|--|--| | Pin number | Pin Definition | Note | | | | 1、2、6 | NC | | | | | 3 | RS232_TX | | | | | 4 | RS232_RX | | | | | 5 | GND | | | | RS485-2 Parallel Interface Definition | RS485- adopts | 8P8C vertical RJ45 socket | RS485- adopts 8P8C vertical RJ45 socket | | | |---------------|---------------------------|---|----------------|--| | Pin number | Pin Definition | Pin number | Pin Definition | | | 1、8 | RS485- B2 | 9、16 | RS485- B2 | | | 2、7 | RS485-A2 | 10、15 | RS485-A2 | | | 3、6 | GND | 11、14 | GND | | | 4、5 | NC | 12、13 | NC | | # Definition of protection board interface | interface | Definition Description | | | | | |----------------------|---|--|-----|-------------------------------------|--| | BAT+ | Connect the battery pack positive electrode to provide power to the BMS board. | | | | | | B- | Connect the negative electrode of the battery pack. | | | | | | P- | The negative electrode of the battery PACK is also the charging and discharging negative electrode, with the same charging and discharging port | | | | | | | NT1 | Connected to NTC1 temperature probe | NT3 | Connected to NTC3 temperature probe | | | | GND | Connected to NTC1 temperature probe | GND | Connected to NTC3 temperature probe | | | | BO | The first negative pole of the battery cell string | B8 | NC | | | | B1 | 1st cell+ | В9 | 9th cell+ | | | | B2 | 2nd cell+ | B10 | 10th cell+ | | | | В3 | 3rd cell+ | B11 | 11th cell+ | | | Cell and temperature | B4 | 4th cell+ | B12 | 12th cell+ | | | | NTC2 | Connected to NTC2 temperature probe | B13 | 13th cell+ | | | | GND | Connected to NTC2 temperature probe | B14 | 14th cell+ | | | | B5 | 5th cell+ | B15 | 15th cell+ | | | | B6 | 6th cell+ | B16 | 16th cell+ | | | | В7 | 7th cell+ | | | | | | B8 | 8th cell+ | | | | # Heating interface definition | Interface | Definition Description | | |-----------|--|--| | CD+ | Charging indicator input positive pole | | | CD- | Charging indicator input negative pole | | | H+ | + Heating negative electrode | | # Display interface definition | Interface | Definition Description | | |---|---|--| | VCC_10V | Display screen power supply positive pole | | | LCD_485A | Display screen data transmission signal | | | LCD_485B | Display screen data transmission signal | | | GND | GND Display screen power supply negative pole | | | POW_OFF_COG Positive pole of equipment power switch | | | | POW_OFF_GND | Negative pole of equipment power switch | | ## 10. Wiring diagram There are strict sequence requirements for powering on the protection board. First, weld B -, P-, B+, P+, and then plug in the battery sampling line connectors from low to high in sequence. After powering on, you need to activate the button. Only after all connecting wires are installed can the load or charger be added. When dismantling, first unplug the charger or load, and then disassemble the battery sampling line connectors in descending order. Finally, disassemble B+, P+, B-, and P-. # 11. Dimensional drawing # Unit: mm ## **APP** installation Scan the QR code to obtain the mobile phone APP matching with the product. ## 5.3 App operation instructions ## 5.3.1 Equipment operation #### a) Device connection First turn on the mobile phone's Bluetooth, and then turn on the APP, as shown in Figure 13. Click the icon in the upper left
corner to scan the device. After the scan is completed, click the name of the device to be connected, such as "JK-B1A24S15P". The APP will prompt for a password when connecting for the first time. The default password of the device is "1234" or "123456". The APP will automatically record the password after the device is connected. There is no need to enter the password for the next connection. It will automatically connect after opening the APP. The password input interface is shown in Figure 14. Figure 13. Scan the device Figure 14. Password input ## a) Change password and name After the device is connected, click the "pen" icon on the right side of the device list to modify the device name and password. The interface for modifying the device name is shown in Figure 15. Note that the device name only supports English or numbers, not Chinese names and Chinese characters. The password modification interface is shown in Figure 16. To modify the device password, you must first enter the device's old password. Only when the current password is correct, can you enter the new password input option. After entering the new password twice, click "OK" to complete the device password modification. Figure 15. Name modification Figure 16. Password modification← ## 5.3.2 Status view. The real-time status interface is shown in Figure 17. Figure 17. Real-time status display The real-time status page is divided into 3 areas. The area 1 in the figure is the comprehensive battery information column. The parameters are explained as follows: ## a) Operation hours Running time represents the total running time from the time the protection board was turned on. #### b) Charge Indicates the current on state of the charging MOS of the protection board. When it displays "on", it means that the current protection board charging MOS is on and the battery is allowed to charge; when it displays "off", it means the current protection board charging MOS is off and the battery is not allowed to charge. #### c) Discharge Indicates the current on state of the protection board discharge MOS. When "ON" is displayed, it means that the current protection board discharge MOS is on, and the battery is allowed to discharge; when "OFF" is displayed, it means that the current protection board discharge MOS is off, and the battery is not allowed to discharge. #### d) Balance Indicates the current state of the protection board balance switch. When "On" is displayed, the protection board will automatically balance when the balance starting conditions are met; when "Off" is displayed, it means that the balance is off, and the protection board will not balance the battery. #### e) Voltage The voltage area displays the current total voltage of the battery in real time, and the total voltage is the sum of all cell voltages. #### f) current The current area displays the total current of the current battery in real time. When the battery is charging, the current is positive, and when the battery is discharging, the current is negative. ## g) Battery power Represents the total power output or input of the current battery, and its value is the product of the current battery voltage and the absolute value of the battery current. ## h) Remaining battery Represents the percentage of current battery power remaining. ## i) Battery capacity Represents the actual battery capacity calculated by the current protection board based on the highprecision SOC. The unit is AH. (This value needs to be updated after a complete discharge and charge cycle of the battery) . ## j) Remaining capacity Remaining capacity indicates the remaining capacity of the current battery, unit: AH. ## k) Cycle capacity The cycle capacity indicates the cumulative discharge capacity of the battery, and the unit is AH. ## l) Number of cycles The number of cycles indicates the number of times that the current battery is fully charged, and the unit is: times. #### m) Monomer average Indicates the average voltage of the current battery cell, unit: V. #### n) Maximum voltage difference The maximum voltage difference represents the difference between the highest battery voltage and the lowest battery voltage of the entire battery. The unit is V. #### o) Balance current When the protection board turns on the balance function and reaches the balance condition, it displays the balance current in real time. Unit: A. When the balance is performed, the status display area of the real-time status, blue represents a discharged battery, and red represents a charged battery. Balanced current negative current indicates that the battery is discharging, and blue flashes at this time, and balanced current positive current indicates that the battery is charging, and red flashes. The protection board uses active balance technology. The principle of balance is to take power from high-voltage cells, store them on the protection board, and then put them on low-voltage cells. ## p) MOS temperature Real-time display the current temperature of the protection board power MOS, unit: °C. #### q) Battery temperature 1 When the temperature sensor 1 is not installed, "NA" is displayed. When the temperature sensor is installed, the temperature of the temperature sensor 1 is displayed in real time, and the unit is ° C. ## r) Battery temperature 2 When the temperature sensor 2 is not installed, "NA" is displayed. When the temperature sensor is installed, the temperature of the temperature sensor 2 is displayed in real time, and the unit is ° C. ## s) Heating status (if supported) Under the condition that the protection board supports heating, the current heating switch status of the protection board is displayed in real-time, with the display content being "on" or "off". ## t) Heating current (if supported) Under the condition that the protection board supports heating, when the protection board heating is turned on, the current heating current is displayed in real time, unit: A; ## u) ACC (if supported) If the protection board supports ACC recognition function, the current status of ACC will be displayed here, with the display content being "on" or "off". When the protection board supports ACC recognition, the discharge output of the protection board can only be turned on when the ACC status is "on". ## v) Charger (if supported) If the protection board supports the charger recognition function, the current status of the charger will be displayed here, with the display content being "inserted" or "not inserted". In this case, the charger status needs to be "inserted" in order to turn on charging. ## w) Pre charge state (if supported) Indicates the current state of the discharge pre charge switch. When the displayed content is "On", the discharge pre charge switch is opened, and the battery passes through the pre charge switch and flows through the pre charge resistor to pre charge the controller. The pre charging time is the value set in the parameter settings for "discharge pre charging time". After the pre charging is completed, the protection board will automatically open the discharge switch. #### x) SOH valuation (if supported) Indicates the estimated battery health status of the current protection board. ## y) Emergency time (if supported) Under the condition of turning on the emergency switch, the remaining emergency time is displayed here. Unit: seconds (S). Zone 2 in the figure represents the individual voltage region. Real time display of voltage data for each individual cell in the battery pack, with red indicating the lowest voltage cell and blue indicating the highest voltage cell. Zone 3 in the figure represents the resistance area of the equalizing line. The balance line resistance is the balance line resistance obtained from the self inspection of the protection board. This value is only a preliminary calculation, in order to prevent incorrect connection or poor contact. When the balance line resistance exceeds a certain value, it will be displayed in yellow, and the balance cannot be turned on at this time. ## **5.3.3** Parameter setting The parameter setting page is shown in Figure 18. If you need to modify the working parameters of the protection board, you must first click the "Authorization Settings" button, enter the parameter setting password, and verify the parameter setting permissions. The factory default password for parameter settings is "123456". Only after correctly entering the parameter setting password can the parameters of the protection board be modified. The parameter setting password and device Bluetooth connection password are independent of each other. On the parameter setting page, various working parameters of the protection board can be modified, and the definitions of each parameter are as follows. #### a) One click lithium iron Function this button can modify all the working parameters of the protection board to iron lithium battery parameters. The default values of the parameters are shown in Appendix 1. #### b) One click to Li-ion Function this button can modify all the working parameters of the protection board to the iron-lithium battery parameters. The default values of the parameters are shown in Appendix 2. #### c) One click to LTO This function button can modify all working parameters of the protection board to lithium titanate battery parameters. The default values of lithium titanate parameters are shown in the appendix. ## d) Number of monomers The number of cells indicates the number of cells of the current battery. Please set this value accurately before use, otherwise the protection board will not work normally. ## e) Battery capacity This value is the design capacity of the battery. ## f) Trigger equalizing pressure difference The trigger equalization pressure difference is the only parameter that controls the equalization. When the equalization switch is turned on, when the maximum pressure difference of the battery pack exceeds this value, the equalization starts and ends when
the pressure difference falls below this value. For example, set the equalization trigger voltage difference to 0.01V, when the battery pack voltage difference is greater than 0.01V, the equalization will begin, and the equalization will end when the voltage drop is below 0.01V. (It is recommended that the balance trigger voltage difference of the battery above 50AH is 0.005V, and the balance trigger voltage difference of the battery below 50AH is 0.01V). ## g) Voltage calibration The voltage calibration function can be used to calibrate the accuracy of voltage collection on the protection board. When there is an error between the total voltage collected by the protection board and the total voltage of the battery, the voltage calibration function can be used to calibrate the protection board. The calibration method is to fill in the current measured total battery voltage, and then click the 'Set' button after voltage calibration to complete the calibration. ## h) Current calibration The current calibration function can be used to calibrate the accuracy of current collection on the protection board. When there is an error between the total current collected by the protection board and the actual current of the battery, the current calibration function can be used to calibrate the protection board. The calibration method is to fill in the current measured total battery current, and then click the 'Set' button after current calibration to complete the calibration. ## i) "Single undervoltage protection", "Single undervoltage recovery" "Single undervoltage protection" refers to the cut-off voltage of the cell. As long as the voltage of any cell in the battery pack is lower than this value, a "cell undervoltage alarm" is generated, and the protection board turns off the discharge MOS. At this time, the battery cannot Discharge, only charge. When the alarm is generated, only after the voltage values of all cells exceed the value of "cell voltage". recovery", the protection board releases the "cell undervoltage alarm" and turns on the discharge MOS at the same time. #### j) "Single overcharge voltage", "Single overcharge recovery" "Single overcharge voltage" refers to the saturation voltage of the battery cell. As long as the voltage of any single cell in the battery pack exceeds this value, a 'single overcharge alarm' is generated, and the protection board turns off the charging MOS, and the battery cannot be charged at this time. Can only be discharged. When the alarm occurs, only after the voltage value of all the cells is lower than the value of "cell overcharge recovery", the protection board releases the "cell overcharge alarm" and turns on the charging MOS at the same time. #### k) Automatic shutdown voltage The automatic shutdown voltage indicates the minimum voltage at which the protection board works. When the voltage of the highest cell in the battery pack is lower than this value, the protection board closes. This value must be lower than the "cell undervoltage protection". #### 1) Equilibrium starting voltage The equilibrium starting voltage is used to control the voltage stage of equilibrium. Only when the individual voltage exceeds this value and the maximum voltage difference of the battery pack exceeds the equilibrium triggering voltage difference, equilibrium will be triggered. #### m) Maximum balanced current The equilibrium current represents the continuous current during the process of energy transfer between the discharge of high voltage batteries and the charging of low voltage batteries. The maximum equilibrium current represents the maximum current during the energy transfer process, and the maximum equilibrium current should not exceed 0.1C. For example, a 20AH battery should not exceed 20 * 0.1=2A. # n)"Maximum charging current", "Charging overcurrent delay", "Charging overcurrent release" When charging the battery pack, when the current exceeds the "maximum charging current" and the duration exceeds the "charge overcurrent delay" time, the protection board generates a 'charging overcurrent alarm' and turns off the charging MOS at the same time. After the alarm occurs, after the "charge overcurrent release" time elapses, the protection board releases the charge overcurrent alarm and restarts the charging MOS. Example: Set "Maximum Charging Current" to 10A, "Charge Overcurrent Delay" to 10 seconds, and "Charge Overcurrent Release" to 50 seconds. During the charging process, the charging current exceeds 10A for 10 seconds. The protection board will generate a 'charging overcurrent alarm' and turn off the charging MOS at the same time. 50 seconds after the alarm is generated, the 'charging overcurrent alarm' will be cancelled and the protection board will turn on the charging MOS again. # o) "Maximum discharge current", "Discharge overcurrent delay", "Discharge overcurrent release" When discharging the battery pack, if the current exceeds the "maximum discharge current" and the duration exceeds the "discharge overcurrent delay" time, the protection board will generate a "discharge overcurrent alarm" and turn off the discharge MOS. After the alarm is generated, after the "discharge overcurrent release" time, the protection board releases the "discharge overcurrent alarm" and restarts the discharge MOS. Example: Set "Maximum discharge current" to 100A, "Discharge overcurrent delay" to 10 seconds, and "Discharge overcurrent release" to 50 seconds. During the discharge process, if the discharge current exceeds 100A for 10 seconds, the protection board will generate a 'discharge overcurrent alarm' and turn off the discharge MOS. 50 seconds after the alarm is generated, the 'discharge overcurrent alarm' will be released and the protection board will restart the discharge MOS. #### p) Short circuit protection delay When the protection board detects that the current exceeds 600A and the duration exceeds the "short circuit protection delay" time, the protection board generates a "short circuit alarm" and corresponding charging and discharging switches. After the alarm is generated, after the "short circuit protection is released" time, the protection board will release the "short circuit protection alarm" and restart the charging and discharging switch. For example, set the "Short Circuit Protection Delay" to 1000 microseconds and the "Short Circuit Protection Release" to 50 seconds. During the charging and discharging process, if the current is continuously 1000 microseconds and 600A, the protection board will generate a 'short circuit protection alarm'. At the same time, the corresponding charging and discharging switch will be triggered. 50 seconds after the alarm is triggered, the 'short circuit protection alarm' will be released, and the protection board will restart the charging and discharging switch. (It is recommended to use the factory default settings unnecessarily; setting the short-circuit protection to '0' indicates that the short-circuit protection is turned off) #### q) Release of short circuit protection After the short circuit protection occurs, after the time set for 'short circuit protection release', the short circuit protection is released. #### r) "Charging over temperature protection", "Charging over temperature recovery" During the charging process, when the battery temperature exceeds the value of "charging over-temperature protection", the protection board will generate a warning of "charging over-temperature protection" and the protection board will turn off the charging MOS. After the alarm is generated, when the temperature is lower than the "charging over temperature recovery", the protection board will release the "charging over temperature protection" warning, and at the same time restart the charging MOS. #### s) "Discharge over temperature protection" and "Discharge over temperature recovery" During the discharge process, when the battery temperature exceeds the value of "discharge over temperature protection", the protection board generates a warning of "discharge over temperature protection", and at the same time, the protection board closes the discharge switch. After the alarm is generated, when the temperature drops below the "discharge over temperature recovery" level, the protection board will release the "discharge over temperature protection" warning and restart the discharge switch. #### t) "Charging low temperature protection", "Charging low temperature recovery" During the charging process, when the battery temperature is lower than the value of "charging low temperature protection", the protection board will generate a "charging low temperature protection" warning, and the protection board will close the charging MOS. After the alarm is generated, when the temperature is higher than the "charging low temperature recovery", the protection board releases the "charging low temperature protection" warning, and at the same time restarts the charging MOS. #### u)"MOS over-temperature protection", "MOS over-temperature recovery" When the MOS temperature exceeds the value of "MOS over temperature protection", the protection board generates a "MOS over temperature alarm" and closes the charge and discharge MOS, and the battery cannot be charged or discharged. After the alarm is generated, after the MOS temperature is lower than the value of "MOS over temperature recovery", the protection board will release the "MOS over temperature alarm", and at the same time turn on the charge and discharge MOS (MOS over temperature protection value is 75°C, MOS over temperature recovery value 65°C, these two values are factory default values and cannot be modified). #### v) Device address (if supported) The device slave address used to configure the protection board. #### w) Discharge pre charge time (if supported) When the protection board supports the discharge pre charge function, this value is used to control the closing time of the discharge pre charge switch, in
seconds. After the pre charging of discharge is completed, the discharge switch is automatically turned on to start discharging. #### x) User private data (user data) In the application of power exchange in iron structures, the first 12 digits of the BT code are filled in here. The BT code in the Tiejia Power Exchange Protocol has a total of 24 digits, with the last 12 digits being the Bluetooth name. For example, the BT code of the battery is BT207204012YMLD220815001; Then fill in the user's private data in the first 12 digits of BT207204012Y, and fill in the Bluetooth name in the last 12 digits of MLD220815001. #### y) Connection line resistance Connection line resistance is used for multi box batteries, not for single box batteries. Please consult the supplier for specific usage methods (note that the connection line resistance is not substantially related to the equalization line resistance on the real-time data page). #### **Attention:** Please refer to the manual for any parameter modifications. Improper parameters may cause the protection board to malfunction or even burn out. After modifying any parameter, you need to click the "Set" button after the parameter to complete the parameter. After the protection board successfully receives the parameter, it will emit a "drip" sound. #### 5.3.4 BMS control The BMS control page is shown in the figure 19. Through BMS control, the charging function, discharge function, equalization function, and emergency switch of the protection board can be switched on and off. Figure 19. BMS Control page #### Ay) Charg switch To control the charging switch of the protection board on or off. #### Az) Discharge switch Used to control the opening or closing of the discharge switch on the protective board. #### Ba) Equalization switch Used to control whether the balance function of the protection board is turned on or off. #### **Bb)** Emergency switch Regardless of any battery failure, opening the emergency switch can open the charging and discharging function, allowing users to use the battery in an emergency manner. After the emergency switch is turned on, it automatically turns off within 30 minutes, without the need for the user to turn it off themselves (after turning on the emergency switch, the battery loses any protective function, and do not turn on this switch unless necessary). #### **BC**) Heating switch Under the condition that the protection board supports heating, when the heating conditions are met, the charger can only be detected or the heating switch can be turned on for heating. #### **Bd)** Temperature sensor shielding Turn on the temperature sensor shielding switch, and at this time, the protection board ignores temperature related alarms (this function is commonly used in cases where the temperature sensor is damaged for some reason). #### Be) GPS heartbeat detection After turning on the GPS heartbeat detection function, the protection board will detect the connection status of the GPS. When the GPS is disconnected from the protection board for more than 24 hours, the protection board will turn off the charging and discharging switch and generate an alarm of "GPS disconnection" (this function is usually used for GPS anti disassembly detection). #### **Bf)** Multiplexing port switching This function can switch the output function of the multiplexing port on the protection board, with the switching options being "RS485" or "CAN" (corresponding functions need to be supported by the protection board hardware). #### 6 Safety protection measures and precautions Before use, please carefully read the user manual and follow the wiring diagram corresponding to the number of strings. Connect from the negative pole to the positive pole, and after connecting the equalizing wire, confirm with a multimeter again. Only after confirming that there are no errors can the protective board be inserted. The default password for the protection board is "1234", and the default authorization password is "123456". After connecting the mobile app to the protection board, **please modify the connection** password in a timely manner to prevent malicious connections by others. # Appendix Default parameters of "One-click Lithium Iron", "One-click Ternary" and "One- click Lithium Titanate | No. | Parameter | Ternary
default | Lithium iron
default | Lithium titanate
default | Unit | |-----|--|--------------------|-------------------------|-----------------------------|------------------------| | 1 | Single undervoltage protection | 2.9 | 2.6 | 1.8 | V | | 2 | Monomer undervoltage protection recovery | 3.2 | 3.0 | 2.0 | V | | 3 | Single overcharge voltage | 4.2 | 3.6 | 2.7 | V | | 4 | Monomer overcharge protection recovery | 4.1 | 3.4 | 2.4 | V | | 5 | Trigger equalizing pressure difference | 0.01 | 0.01 | 0.01 | V | | 6 | Automatic shutdown voltage | 2.8 | 2.5 | 1.7 | V | | 7 | Charge overcurrent protection delay | 30 | 30 | 30 | S | | 8 | Charge overcurrent protection release time | 60 | 60 | 60 | S | | 9 | Discharge overcurrent protection delay | 30 | 30 | 30 | S | | 10 | Discharge overcurrent protection release time | 60 | 60 | 60 | S | | 11 | Short circuit protection release time | 60 | 60 | 60 | S | | 12 | Charging over temperature protection temperature | 60 | 60 | 60 | ${\mathbb C}$ | | 13 | Charging over temperature recovery temperature | 55 | 55 | 55 | $^{\circ}\!\mathbb{C}$ | | 14 | Discharge over temperature protection temperature | 60 | 60 | 60 | $^{\circ}\!\mathbb{C}$ | | 15 | Discharge over temperature recovery temperature | 55 | 55 | 55 | ${\mathbb C}$ | | 16 | Charging low temperature protection temperature | -20 | -20 | -20 | ${\mathbb C}$ | | 17 | Charging low temperature recovery temperature | -10 | -10 | -10 | ${\mathbb C}$ | | 18 | MOS over temperature protection temperature | 75 | 75 | 75 | $^{\circ}$ | | 19 | MOS over temperature protection recovery temperature | 70 | 70 | 70 | ${\mathbb C}$ | # JK-PB BMS Manual JKBMS # Catalog V15 New Features ² ESS BMS 3 Inverter # V15 New Features WWW.JKBMS.COM # Upgrade items of V15 BMS compared to V11 BMS | Version | GPS
interface | Temperature collection | LCD
interface | Heating function | CAN&RS485 | Alarm
function | Parallel
function | |---------|------------------|------------------------|------------------|------------------|-----------------------------|-------------------|----------------------| | V11 | support | 2cable | support | some have | pick one of two | not support | not
support | | V15 | support | 4cable | support | all support | all can be use in same time | all support | all support | ❖ Upgrade items of V15 BMS compared to V11 BMS (sample by 6P) ### Interface definition comparison V15背面 V15正面 2 # ESS BMS 1.ESS BMS Wiring 2.Communication RS485 CAN — WWW.JKBMS.COM # — www.jkbms.com # Adpater board definition #### 干接点接口定义 | 引脚序号 | 引脚定义 | 备注 | |------|------|------------------------| | 1 | COM1 | ── 有告警状况下 S1 和 COM1 导通 | | 2 | S1 | 一 有音音状况下SI和COMII 子通 | | 3 | COM2 | ─ 低电量状况下 S2 和 COM2 导通 | | 4 | S2 | 一 似电里状况下 S2 和 COM2 于通 | #### CAN 和 RS485-1 接口定义 | RS485-采用 8P8 | C 立式 RJ45 插座 | CAN-采用 8P8C 立式 RJ45 插座 | | | |--------------|--------------|------------------------|------|--| | 引脚序号 | 引脚定义 | 引脚序号 | 引脚定义 | | | 1, 8 | RS485- B1 | 9, 10, 11, 14, 16 | NC | | | 2、7 | RS485-A1 | 12 | CANL | | | 3, 6 | GND | 13 | CANH | | | 4、5 | NC | 15 | GND | | #### RS232 接口定义 | RS232-采用 6P6C 立式 RJ11 插座 | | | | | |--------------------------|----------|----|--|--| | 引脚序号 | 引脚定义 | 备注 | | | | 1, 2, 6 | NC | | | | | 3 | RS232_TX | | | | | 4 | RS232_RX | | | | | 5 | GND | | | | #### RS485-2 并联接口定义 | RS485-采用 8P80 | RS485-采用 8P8C 立式 RJ45 插座 | | RS485-采用 8P8C 立式 RJ45 插座 | | | |---------------|--------------------------|--------|--------------------------|--|--| | 引脚序号 | 引脚定义 | 引脚序号 | 引脚定义 | | | | 1, 8 | RS485- B2 | 9、16 | RS485-B2 | | | | 2, 7 | RS485-A2 | 10、15 | RS485-A2 | | | | 3, 6 | GND | 11, 14 | GND | | | | 4、5 | NC | 12、13 | NC | | | ### **ESS BMS WIRING** JK-PBxA16S-10P/15P/20P Active balance BMS Wiring Diagram # Batteries in parallel - 1.Batteries in parallel, + to +, to -; - 2.Each battery pack previously communicated through the RS485-2 interface. In a parallel battery pack system, one and only one master is required (the device address is set to 0), the rest are slaves and the addresses of the slaves cannot be the same. # ESS BMS Address settings ESS BMS Address settings: - 1.ESS BMS adpater broad (picture 1) have 4 DIP switches for setting device address; - 2.ON means open, OFFmeans close; - 3. The actual corresponding address values of 1, 2, 3, and 4 on the DIP switch are 1, 2, 4, and 8; then add the values dialed to the ON position to calculate the device address., picture2; 图1 | 地址 | 拨码开关位置 | | | | | |----|--------|-----|-----|-----|--| | | 1 | 2 | 3 | 4 | | | 0 | OFF | OFF | OFF | OFF | | | 1 | ON | OFF | OFF | OFF | | | 2 | OFF | ON | OFF | OFF | | | 3 | ON | ON | OFF | OFF | | | 4 | OFF | OFF | ON | OFF | | | 5 | ON | OFF | ON | OFF | | | 6 | OFF | ON | ON | OFF | | | 7 | ON | ON | ON | OFF | | | 8 | OFF | OFF | OFF | ON | | | 9 | ON | OFF | OFF | ON | | | 10 | OFF | ON | OFF | ON | | | 11 | ON | ON | OFF | ON | | | 12 | OFF | OFF | ON | ON | | | 13 | ON | OFF | ON | ON | | | 14 | OFF | ON | ON | ON | | | 15 | ON | ON | ON | ON | | 图2 # Adpater broad ON/OFF: Power Indicator; RST: Reset button, after clicking, BMS will restart; ADD: BMS address setting: RUN: Indicates that the BMS is running normally; ALM: Fault indicator light, only system faults do not include user-defi SOC: Light up the indicator light; Link: When connected in parallel, the host and slave will flash after successful communication: DRY: Dry node, used by customers to connect some external alarm equipment; CAN: CAN communication interface; RS232: RS232 communication interface; RS485-1: RS485 interface to communicate with the inverter, optional RS485-2: RS485 interface,
communication interface during parallel or ### **ESS BMS COMMUNICATION** #### BMSCommunication interface definition: #### CAN 和 RS485-1 接口定义 | RS485-采用 8P8C | 立式 RJ45 插座 | CAN-采用 8P8C 立式 RJ45 插座 | | | |---------------|------------|------------------------|------|--| | 引脚序号 | 引脚定义 | 引脚序号 | 引脚定义 | | | 1, 8 | RS485- B1 | 9、10、11、14、16 | NC | | | 2, 7 | RS485-A1 | 12 | CANL | | | 3, 6 | GND | 13 | CANH | | | 4、5 | NC | 15 | GND | | ### WWW.JKBMS.COM | 14:16 | :: | !! 令 58 | |--------------------|-------------------|---------| | 三 运行时间 | 间: 48天19时35分11秒 | | | → 一键三元 | | 铁锂 | | ✓ 一键钛酸锂 | ₫ 修改设 | 置密码 | | 数据存储周期(S): | | 设置 | | RCV保持时间(H): | 12.0 | 设置 | | EVENTO I | 选择CAN协议 | | | 000 - 极空BMS | S CAN接口协议(250K)V | 0 | | 001 – 德业低压 | 储能CAN通信协议 V1.0 | 0 | | 002 – 派能低压 | CAN通信协议V1.2 | 0 | | 显 003 – 古瑞瓦特 | 低压CAN通信协议REV | 0 | | 显 004 - 维克多_0
显 | CAN通信协议I_20170717 | 0 | | 005 - SEPLOS_ | | 0 | | 006 - 极空BMS | SCAN接口协议(500K)V | 0 | | 007 – 英威腾低 | 压版BMS通信协议V1.02 | 0 | | | | | # Current limiting module ESS BMS Current limiting function: - 1. The current limiting function is mainly used to balance the voltage between battery packs when connected in parallel; - 2. The current limit is 10A; - 3. The triggering conditions of the current limiting module (the charging prohibition current limiting needs to be turned off, as shown in Figure 1) are charging overcurrent and charging short circuit protection.; - 4. The end condition is that the current limit size is less than 5A; # Dry contact trigger source and display alarm 图2 #### Dry contact function: - 1.Users can connect external alarm equipment (picture 3), such as LEDs, buzzers, etc; - 2.Some alarm function settings can be customized (such as low battery, battery overvoltage, cell overvoltage, etc, picture2); Monitor alarm: The display alarm is similar to the dry node, and the user can define the alarm function by himself. Then alarm through the buzzer on the display; # PC SOFTWARE Use of PC software BMS firmware upgrade WWW.JKBMS.COM # pc software connect Steps to Connect Devices: 1.Use USB to RJ45 cable to connect ESS BMS and computer; 2. Set the upper computer device address to the energy storage BMS dialing address; - 3. Select the corresponding port number; - 4. Just click to connect; ### * Real time status In the real-time status interface, you can see real-time information related to the battery, such as battery voltage, current, SOC, cell voltage, etc. (as the picture show); # Parameter settings In the parameter setting interface, parameters such as the number of battery strings, cell overvoltage, cell undervoltage, charging overcurrent, and discharging overcurrent can be set, but an authorization password is required. The default is 123456; ☑ 文明状态 ② 参数设置 ② BMS控制 ⑥ SAGE → 放射下板 () 外于6MS オー型三元 オー提供提 オー提供能管 ■ 授权设置 常用设置 单体数量 (串): 8 电压校准 (V): 27.957 电池容量 (AH): 40 验证设置参数权限 - 极空8MS监控平台 2.2.0 均衡触发压差 (V): 0.01 请输入密码验证设置参数权限 详細設置 均衡起始电压 (V): 3.0 桃庄 最大均衡电流 (A): 2.0 放电过温恢复 (°C): 60.0 单体过充电压 (V): 4.2 充电低温保护 (*C): -20.0 SOC-100%电压(V): 4.18 充电低温恢复 (°C): -10.0 MOS过温保护 (°C): 100.0 单体过充恢复 (V): 4.18 单体欠压恢复 (V): 2.85 MOS过温恢复 (°C): 80.0 連讯状态: 直接 助开直接 ### BMS control In the control interface, you can control the battery charging switch, discharge switch and other control operations. The default authorization password is 123456; # System log On the system log page, the "Update Log" button can update the BMS internal logs to the host computer for display. The Export Log button can export all current logs to a designated folder on the computer in the format of xlsx, which can be viewed using excel and other software. # Faulty download On the fault download page, the "Fault Download" button can update the BMS internal fault log to the host computer for display. The "Export Fault" button can export all currently displayed fault logs to a designated folder on the computer in the format of xlsx, using software such as excel. Available to view. ### About BMS About BMS page, showing basic information of the product: model, hardware version, software version, power-on time and other information • # Parallel monitoring On the parallel monitoring page, you can view relevant information such as real-time parameters and configuration parameters of the host and each slave.; # Real-time data logging 1.Click the triangle icon in the upper right corner. If it changes to a square, it will start to save real- # Real-time data logging 2. The save path can be set in the picture below. Click the three dots in the upper right corner and then set the button to see; # Upgrade firmware 1. Firmware upgrade function. When upgrading firmware, BMS needs to be set as a slave (the address cannot be 0) and cannot communicate with other BMS hosts.; # Upgrade firmware 2.Then click on the three-point mutation in the upper right corner of the host computer, click "Upgrade Firmware", select the corresponding firmware, click Start Upgrade to start the upgrade normally, and the end of the progress bar indicates that the upgrade is completed. ## Forced upgrade - 1.Click on the three point mutations in the upper right corner of the host computer;2.Click "Upgrade Firmware", select the corresponding firmware, and click Force Upgrade; - 3. Fill in the authorization code (please contact the original manufacturer if you need an authorization code); - 4. The end of the progress bar indicates that the upgrade is completed. ### Upgrade failed What to do after an upgrade fails: - 1. Repeat the forced upgrade operation; - 2.Keep pressing the activation switch (as shown in Figure 1) or the display switch (as shown in Figure 2); - 3.Press the reset switch RST (as shown in Figure 3) and release it; - 4. Wait for the progress bar to end, indicating that the upgrade is complete.; # Inverter Inverter wiring Inverter settings WWW.JKBMS.COM # Inverter introduction The main function of inverter wiring: - 1. Alternating current (AC) to direct current (DC), convert the mains power into direct current through the inverter and store it in the battery; - 2. Direct current (DC) to alternating current (AC), convert the direct current stored in the battery into alternating current for household electricity consumption; - 3. Direct current (DC) to direct current (DC), storing the electrical energy generated by photovoltaics into batteries; ### Inverter wiring Main components of inverter wiring: - 1.Battery - 2.load - 3.photovoltaic - 4. Mains power ### Inverter settings 目前适配的逆变器需要设置的品牌: - 1.德业 (Deye) - 2. 古瑞瓦特(Growatt) - 3. 日月元(Voltronic) - 4.硕日(SRNE) - 5.美世乐(MUST) - 6.固德威(GoodWe) 目前适配的逆变器不需要设置的品牌: - 1.英威腾(INVT) - 2. 维克托(Victron) 不确定: - 1.SMA - 2.派能(Pylon) # ❖ 德业 (Deye)parameter settings Inverter setup steps: - 1.Go to the settings page (Figure 1) - 2.Click on Battery Setting and set it to Lithium (Figure - 2); - 3.Click Advanced Function and set BMS _Err_Stop (Figure 3); 图1 # ❖ 古瑞瓦特(Growatt)parameter settings #### Inverter setup steps: - 1. Press and hold the Enter key to enter setting mode - 2. Set item 05 to LI (as shown in Figure 1); - 2. After successful setting, it will jump to item 36; - 3. If RS485 communication is used, set item 36 to L01 (as shown in Figure 2); if CAN communication is used, set item 36 to L51 (as shown in Figure 3); # ❖ 日月元(Voltronic)parameter settings Inverter parameter settings: - 1. Press and hold the SET button to enter the setting page; - 2. Set item 05 to LIB, as shown in Figure 1 # www.jkbms.com ❖ 固德威(Goodwe)参数设置 ## ❖ 硕日(SRNE)parameter settings #### Inverter parameter settings: - 1. Press and hold the SET button to enter the setting page; - 2. Set 32 items into BMS, as shown in Figure 1; 3. Set item 33 to WOW, as shown in Figure 2; 4. Set 39 items to BMS, as shown in Figure 3; 图1 # ❖ 美世乐(MUST)parameter settings #### Inverter setup steps: - 1. Press and hold the Enter key to enter the settings page - 2. Use the Enter key to switch between 40 items; - 3. Set the setting items as shown in the picture, otherwise blind charging will be performed according to the inverter settings;