# JSS715N Servo Drive

# User Guide

Data code: C2312010XXX Version: A00



Power range: 0.05 kW to 7.5 kW



#### **Legal Information Statement:**

- The product described in this documentation may be operated only by personnel qualified for the specific task in accordance with the relevant documentation.
- All operations on the product must follow respective descriptions provided in the documentation, in particular, its warning notices and safety instructions.
- Damage caused by improper use is not covered by warranty.
- The company will disclaim any legal liability for any personal injury or property damage caused by improper usage.

# Contents

| Chapter | 1 Product Information                         | 10 |
|---------|-----------------------------------------------|----|
| 1.1     | Features                                      | 10 |
| 1.2     | Model                                         | 11 |
| 1.3     | Nameplate                                     | 11 |
| 1.4     | Components                                    | 12 |
| 1.5     | Rated Data                                    | 13 |
| 1.6     | Technical Specifications                      | 14 |
| 1.7     | Communication Specifications                  | 16 |
| Chapter | 2 Mechanical Installation                     | 18 |
| 2.1     | Installation Environment                      | 18 |
| 2.2     | Installation clearance                        | 19 |
| 2.3     | Installation Orientation                      | 21 |
| 2.4     | Installation Dimensions                       | 22 |
| 2.5     | Installation Guide                            | 25 |
| Chapter | 3 Electrical Installation                     | 26 |
| 3.1     | System Topology                               | 26 |
| 3.2     | System Wiring                                 | 31 |
| 3.3     | Ports                                         | 33 |
| 3.4     | Power Supply Connection                       | 39 |
| 3       | .4.1 Main circuit wiring                      | 40 |
| 3       | .4.2 Cable specifications and recommendations | 42 |
| 3       | .4.3 Grounding                                | 43 |
| 3.5     | Motor Connection                              | 47 |
| 3.6     | Encoder Connection (CN2)                      | 48 |
| 3.7     | Control Signal Connection (CN1)               | 50 |
| 3       | .7.1 I/O signal                               | 50 |
|         | .7.2 Digital input/output (DI/DO) signals     | 51 |
|         | .7.3 Wiring of the brake                      | 54 |
| 3.8     | Communication Signal Connection (CN3 and CN4) | 57 |

| 3.9 Communication Terminal Connection (CN6)                | 59  |
|------------------------------------------------------------|-----|
| 3.10 Braking Resistor Connection                           | 59  |
| Chapter 4 Function Overview                                | 62  |
| 4.1 Basic Functions of the Servo Drive                     | 62  |
| 4.1.1 Function Overview                                    | 62  |
| 4.1.2 Profile Position (PP) Mode                           | 62  |
| 4.1.3 Profile Velocity (PV) Mode                           | 68  |
| 4.1.4 Profile Torque (PT) Mode                             | 71  |
| 4.1.5 Homing Mode (HM)                                     | 75  |
| 4.1.6 Cyclic Synchronous Position (CSP) Mode               | 112 |
| 4.1.7 Cyclic Synchronous Velocity (CSV) Mode               | 115 |
| 4.1.8 Cyclic Synchronous Torque (CST) Mode                 | 118 |
| 4.1.9 Touch Probe Function                                 | 121 |
| 4.1.10 Software Position Limit                             | 124 |
| Chapter 5 Absolute System                                  | 126 |
| 5.1 Absolute System Setting                                | 126 |
| 5.2 Absolute Position Linear Mode                          | 127 |
| 5.3 Absolute Position Rotation Mode                        | 128 |
| 5.4 Absolute Position Single-turn Mode                     | 131 |
| 5.5 Precautions for Use of the Absolute system Battery Box | 131 |
| Chapter 6 System Commissioning                             | 133 |
| 6.1 Commissioning Tool                                     | 133 |
| 6.1.1 Buttons                                              | 133 |
| 6.1.2 Display                                              | 134 |
| 6.2 Commissioning Process                                  | 137 |
| 6.3 Commissioning Procedure                                | 138 |
| 6.3.1 Power on the servo drive                             | 138 |
| 6.3.2 Jogging                                              | 138 |
| 6.3.3 Set parameters                                       | 139 |
| 6.3.4 Servo running                                        | 143 |
| 6.3.5 Stop the servo drive                                 | 144 |
| Chapter 7 Gain Tuning                                      | 146 |

| 7.1        | Overview                                           | 146 |
|------------|----------------------------------------------------|-----|
| 7.2        | Inertia Auto-tuning                                | 146 |
| 7.3        | Basic Gain Tuning                                  | 148 |
| 7.4        | Pseudo derivative feedback and feedforward control | 151 |
| 7.5        | Gain Switchover                                    | 152 |
| 7.6        | Speed Feedforward                                  | 154 |
| 7.7        | Torque Feedforward                                 | 154 |
| 7.8        | Position Reference Filter                          | 155 |
| 7.9        | Model Tracking Control                             | 155 |
| 7.10       | Speed Feedback Filter                              | 156 |
| 7.11       | Speed Observer                                     | 157 |
| 7.12       | Disturbance Observer                               | 157 |
| 7.13       | Friction Compensation                              | 158 |
| 7.14       | Vibration Suppression                              | 159 |
| Chapter 8  | Communication Description                          | 162 |
| 8.1        | Overview                                           | 162 |
| 8.1        | .1 EtherCAT Overview                               | 162 |
| 8.1        | .2 EtherCAT communication technical specifications | 164 |
| 8.1        | .3 EtherCAT communication specification            | 165 |
| 8.2        | Communication Transmission Modes                   | 165 |
| 8.2        | .1 EtherCAT Communication Structure                | 165 |
| 8.2        | .2 Communication State Machine                     | 166 |
| 8.2        | .3 DC                                              | 168 |
| 8.3        | Communication Data Frame Structure                 | 169 |
| 8.3        | .1 Process Data                                    | 169 |
| 8.3        | .2 Mailbox Data                                    | 174 |
| Chapter 9  | DI/DO Function                                     | 175 |
| Chapter 10 | ) Troubleshooting                                  | 177 |
| 10.1       | Fault Alarms                                       | 177 |
| 10.        | 1.1 Fault display and category                     | 177 |
|            | 1.2 Troubleshooting and reset                      | 178 |
|            | 1.3 List of faults and alarms                      | 179 |
|            |                                                    |     |

| 10.2 Solutions                                    | 185 |
|---------------------------------------------------|-----|
| Chapter 11 Parameter List                         | 205 |
| 11.1 Parameter Group Description                  | 205 |
| 11.2 Parameter List                               | 205 |
| 11.2.1 Common Parameters in Group 2000h           | 205 |
| 11.2.2 Common Parameters in Group 6000h           | 231 |
| 11.3 Description of Parameters                    | 236 |
| 11.3.1 Group C00                                  | 236 |
| 11.3.2 Group C01                                  | 237 |
| 11.3.3 Group C03                                  | 243 |
| 11.3.4 Group C05                                  | 244 |
| 11.3.5 Group C06                                  | 245 |
| 11.3.6 Group C0A                                  | 245 |
| 11.3.7 Group C13                                  | 245 |
| 11.3.8 Group R21                                  | 246 |
| 11.3.9 Group F30                                  | 247 |
| 11.3.10 Group F31                                 | 247 |
| 11.3.11 Group U40                                 | 248 |
| 11.3.12 Group 6000                                | 250 |
| Chapter 12 Application Example                    | 259 |
| 12.1 JSS715N and KEYENCE KV8000 Configuration     | 259 |
| 12.1.1 Servo Drive Configuration                  | 259 |
| 12.1.2 KEYENCE KV8000 Software Tool Configuration | 259 |
| 12.1.3 Trial Run                                  | 272 |
| 12.2 JSS715N and Beckhoff PLC Configuration       | 275 |
| 12.2.1 TwinCAT3 installation                      | 275 |
| 12.2.2 Project creation                           | 276 |
| 12.2.3 Network card drive installation            | 277 |
| 12.2.4 Device searching                           | 279 |
| 12.2.5 Servo parameter setting                    | 281 |
| 12.2.6 PDO configuration                          | 281 |
| 12.2.7 Running information configuration          | 282 |
| 12.2.8 Configuration activation                   | 283 |
| 12.2.9 Servo running controlling                  | 284 |

| 12.3 JSS715N and Omron NX1P2 Configuration                | 285 |
|-----------------------------------------------------------|-----|
| 12.3.1 Sysmac Studio installation                         | 285 |
| 12.3.2 Network connection                                 | 286 |
| 12.3.3 Servo setting                                      | 287 |
| 12.3.4 Project creation                                   | 288 |
| 12.3.5 Communication configuration                        | 289 |
| 12.3.6 Device scanning                                    | 290 |
| 12.3.7 Parameter setting                                  | 291 |
| 12.3.8 Servo running controlling                          | 299 |
| Chapter 13 Motor and Options                              | 301 |
| 13.1 Model                                                | 301 |
| 13.2 Nameplate                                            | 302 |
| 13.3 Components                                           | 302 |
| 13.4 Terminal Definition                                  | 302 |
| 13.5 General Specifications                               | 304 |
| 13.5.1 Mechanical Characteristics                         | 304 |
| 13.5.2 Overload Characteristics                           | 305 |
| 13.5.3 Load moment of inertia                             | 306 |
| 13.6 Selection Precautions                                | 307 |
| 13.7 Technical Specifications                             | 308 |
| 13.7.1 Model of 3000 rpm                                  | 308 |
| 13.7.2 Model of 1500 rpm                                  | 319 |
| 13.8 Motor torque-speed characteristics                   | 328 |
| 13.9 Supporting relationship between the drive and motor  | 330 |
| 13.10 Supporting relationship between the motor and cable | 332 |
| 13.11 Cable Information                                   | 338 |
| Chapter 14 Peripheries                                    | 341 |
| 14.1 List of Peripheries                                  | 341 |
| 14.2 Fuse                                                 | 341 |
| 14.3 Electromagnetic Contactor                            | 342 |
| 14.4 Circuit Breaker                                      | 343 |
| 14.5 Absolute Encoder Battery                             | 344 |
|                                                           | 511 |
| Chapter 15 Maintenance                                    | 345 |

| 15.1 Daily Maintenance                           | 345 |
|--------------------------------------------------|-----|
| 15.2 Periodic Maintenance                        | 346 |
| 15.3 Part Replacement                            | 346 |
| 15.3.1 Plain Key Replacement                     | 346 |
| 15.3.2 Oil Seal Replacement                      | 348 |
| Chapter 16 Troubleshooting for Common EMC Issues | 349 |
| 16.1 RCD Malfunction                             | 349 |
| 16.2 Harmonic Suppression                        | 350 |
| 16.3 Control Circuit Interference                | 350 |
| 16.3.1 Common I/O Signal Interference            | 350 |
| 16.3.2 EtherCAT Communication Interference       | 351 |
| Chapter 17 Certification and Standard            | 352 |
| 17.1 CE Certification                            | 352 |
| 17.2 UL/cUL Certification                        | 352 |

# **Safety Information and Precautions**

#### To avoid personal injury or damage to the equipment, matters to be followed are stated as follows:

- Read and follow the Safety Information and Precautions before use.
- Use this product according to the designated environment requirements.
- Follow all safety information and precautions described in the product identification and manual.

#### The degree of injury and damage caused by improper use of this product is distinguished and described as follows:

| <b>DANGER</b>    | This mark indicates that failure to comply with the notice will result in severe personal injury or even death.                           |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| <b>A</b> WARNING | This mark indicates that failure to comply with the notice may result in severe personal injury or even death.                            |
| <b>A</b> CAUTION | This mark indicates that failure to comply with the notice may result in minor<br>or moderate personal injury or damage to the equipment. |
| NOTICE           | If rated precautions are not taken, it may cause undesirable result or state.                                                             |

#### Matters to be followed are described using the following graphic marks:



This graphic mark indicates contents that must be performed.



This graphic mark indicates contents that must not be performed.

# **DANGER**

- Install this product on non-combustible materials such as metal.
- Set up the product in a clean place where it does not contact water or oil.
- Installation and wiring must be performed by qualified electricians.
- Installation personnel must be familiar with product installation requirements and relevant technical materials.
- The moving, installation, wiring, and inspection of this product can be performed only after you cut off the power supply, wait at least 10 minutes, and determine that there is no risk of electric shock.
- Follow the proper electrostatic discharge (ESD) procedures and wear an anti-static wrist strap to perform wiring.
- The cables should be properly connected. The energized part must be properly insulated using an insulator.

- Do not place any combustible material around this product.
- Do not place this product around heating elements such as heaters and large wire-wound resistors.
- Do not use this product in a corrosive and inflammable gas environment or in a place close to combustible materials.
- Do not use this product in a place with strong vibration or impact.
- Do not use this product after the cables are immersed in oil or water.
- Do not perform wiring at power-on.
- Do not damage the cables or apply any excessive external force, weight, or pinch to them.
- Do not connect this product directly to the commercial power supply.
- Do not perform installation and wiring in a place with strong electric or magnetic field.
- Do not perform wiring and equipment operations with wet hands.
- Do not reach your hands into this product.

# **WARNING**

- Specialized loading and unloading equipment must be used to handle the product.
- When handling the equipment with bare hands, hold the equipment casing firmly with care to prevent parts from falling.
- Handle the equipment with care during transportation and mind your steps.
- When this product is installed in a terminal device, the terminal device must be equipped with protection. The protection class must comply with relevant IEC standards and local regulations.
- Cables used for wiring must meet cross sectional area and shielding requirements. The shield of the cable must be reliably grounded at one end.
- Do not install the equipment if you find damage, rust, or signs of use on the equipment or accessories upon unpacking.
- Do not install the equipment if you find water seepage or missing or damaged components upon unpacking.
- Do not install the equipment if you find the packing list does not conform to the equipment you received.
- When the product is lifted by a crane, personnel cannot stand or stay under the product.
- Do not modify this product.
- Do not fiddle with the bolts used to fix equipment components or the bolts marked in red.
- Do not connect the input power supply to the output end of the equipment.

# CAUTION Check whether the equipment or accessories show the evidence of damage, rust, impact, or dampness. Check whether the package contents are consistent with the packing list. After wiring is completed, ensure that there are no screws fallen or cables exposed in the equipment.

- Make sure that the temperature around the equipment is within the range of temperature and humidity.
- Dispose of the equipment as industrial waste during discarding.
- Do not stand on the equipment or place a weight on it.
- Do not let the equipment fall or invert it during the handling or setup.
- Do not place any barriers around the product and peripheral equipment to hinder ventilation.
- Do not let the equipment suffer from any strong impact.

#### Safety Signs

# $\triangle$

#### Danger

 Conduct protective grounding to prevent electric shock. Read through the guide and follow the safety instructions before use.



#### **High Voltage**

 Do not touch terminals with power-on or within 10 minutes after disconnecting the power supply to prevent the risk of electric shock.



#### Hot

• Do not touch the drive during operation and within a short time after shutdown. Failure to comply may cause burns.

#### **Environmental Protection**



#### Reuse

Some components of the product can be reused due to high metal content. Dismantle the product into individual components to improve the metal recycling efficiency. Electrical and electronic components contain metal materials that can also be recycled through a specific separation process.



#### Disposal

 Discard components that cannot be degraded and recycled as industrial wastes according to local regulations.

# Chapter 1 **Product Information**



# Efficient, Reliable, and Reassuring

The JSS715N series is a fast, reliable, and accurate positioning platform servo drive from JSS-MOTOR covering the most common power range of 0.05 kW to 7.5 kW for general automation. It supports both single-phase and threephase power supply systems. It features a space-saving design and excellent servo control performance.

Working together with the JSSMK1 servo drivethe JSS715N series servo drive can optimize the performance and the ease of use. Compatible with mainstream PLCs from brands such as Beckhoff and Omron, the JSS715N series servo drive provides efficient and convenient motion control solutions for various industries.

#### 1.1 Features

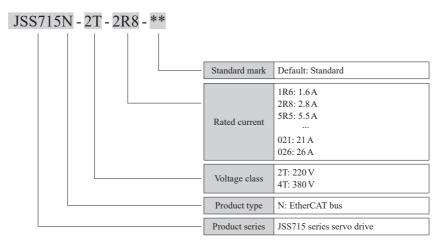
| Ð |
|---|
|---|

#### **Excellent performance**

- High response: 2 kHz speed loop bandwidth
- High accuracy: 17-bit absolute encoder
- High speed: 125 µs synchronization period
- High synchronization: 300 nodes at 120 m distance, 15 ns synchronization error,  $\pm 20$  ns synchronization jitter

#### Sophisticated and novel design




- Integrated communication ports, enhancing wiring efficiency
- Compact design, making the product be able to be installed in narrow space
- Easy to connect and use, with serial commissioning cable to improve commissioning efficiency
- Support to EtherCAT bus servo parameter copy for quick and easy access




#### Safe and reliable

- Built-in dynamic brake function
- Optional high-protection model to cope with harsh application environments

#### 1.2 Model



## 1.3 Nameplate





## 1.4 Components

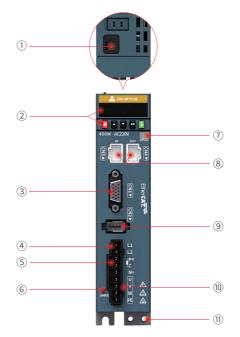



Figure 1-1 Components of the JSS715N servo drive (SIZE A)

| No. | Name                                          | No. | Name                                              |
|-----|-----------------------------------------------|-----|---------------------------------------------------|
| 1   | Commissioning and communication port<br>(CN6) | 7   | QR code on machine                                |
| 2   | Display and operation area                    | 8   | EtherCAT communication network port (CN3 and CN4) |
| 3   | Control signal port (CN1)                     | 9   | Encoder signal port (CN2)                         |
| 4   | Power input                                   | 10  | Motor power output                                |
| 5   | Braking resistor port                         | 1)  | System ground                                     |
| 6   | Charging indicator                            | -   | -                                                 |

# NOTICE

• The above figure describes the component layout of the SIZE A drive. Component layout of other models may be different. For positions of ports of other models, see section 3.3 Ports.

# 1.5 Rated Data

#### Single-phase 220 V servo drive

| Item                             | SIZE-A                                                                                          |                           | SIZE-B  |  |
|----------------------------------|-------------------------------------------------------------------------------------------------|---------------------------|---------|--|
| Power                            | 0.1 kW, 0.2 kW                                                                                  | 0.4 kW                    | 0.75 kW |  |
| Drive model JSS715N              | 2T1R6                                                                                           | 2T2R8                     | 2T5R5   |  |
| Continuous output current (Arms) | 1.6                                                                                             | 2.8                       | 5.5     |  |
| Maximum output current (Arms)    | 5.8                                                                                             | 10.1                      | 16.9    |  |
| Main circuit power supply        | Single-phase 200–240 VAC, -10% to +10%, 50/60 Hz                                                |                           |         |  |
| Control circuit power supply     | Powered up by the bus, sharing one power supply and rectification part<br>with the main circuit |                           |         |  |
| Braking capability               | External bra                                                                                    | Built-in braking resistor |         |  |

#### Single-phase/Three-phase 220 V servo drive

| Item                             | SIZE-C                                                       | SIZE-D |  |  |
|----------------------------------|--------------------------------------------------------------|--------|--|--|
| Power                            | 1.0 kW                                                       | 1.5 kW |  |  |
| Drive model JSS715N              | 2T7R6                                                        | 2T012  |  |  |
| Continuous output current (Arms) | 7.6                                                          | 11.6   |  |  |
| Maximum output current (Arms)    | 23                                                           | 32     |  |  |
| Main circuit power supply        | Single-phase/three-phase 200–240 VAC, -10% to +10%, 50/60 Hz |        |  |  |
| Control circuit power supply     | Single-phase 200–240 VAC, -10% to +10%, 50/60 Hz             |        |  |  |
| Braking capability               | Built-in braking resistor                                    |        |  |  |

## NOTICE

• The main circuits of 2T7R6 and 2T012 drives can be connected to a single-phase or a three-phase power supply, depending on which one is available on site.

## Three-phase 380 V servo drive

| Item                             | SIZE-C                                           |        | SIZE-D |        | SIZE-E |        |        |
|----------------------------------|--------------------------------------------------|--------|--------|--------|--------|--------|--------|
| Power                            | 0.85 kW                                          | 1.5 kW | 2.0 kW | 3.0 kW | 5.0 kW | 6.0 kW | 7.5 kW |
| Drive model JSS715N              | 4T3R5                                            | 4T5R4  | 4T8R4  | 4T012  | 4T017  | 4T021  | 4T026  |
| Continuous output current (Arms) | 3.5                                              | 5.4    | 8.4    | 11.9   | 16.5   | 20.8   | 25.7   |
| Maximum output current (Arms)    | 11                                               | 14     | 20     | 29.8   | 42     | 55     | 65     |
| Main circuit power supply        | Three-phase 380–440 VAC, –10% to +10%, 50/60 Hz  |        |        |        |        |        |        |
| Control circuit power supply     | Single-phase 380–440 VAC, –10% to +10%, 50/60 Hz |        |        |        |        |        |        |
| Braking capability               | Built-in braking resistor                        |        |        |        |        |        |        |

# 1.6 Technical Specifications

#### Basic specifications

| Item                  | Specifications                                                                                                        |  |  |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------|--|--|
| Control mode          | IGBT PWM control, sine wave current drive mode<br>220 V, 380 V: Single-phase or three-phase full-bridge rectification |  |  |
| Encoder feedback      | 17-bit multi-turn absolute encoder, which can be used as a single-turn absolute encoder in absence of the battery     |  |  |
| Operating temperature | 0°C to +55°C<br>(over 45°C: derate 10% for every additional 5°C)                                                      |  |  |
| Storage temperature   | -40°C to +70°C                                                                                                        |  |  |
| Altitude              | Up to 2000 m.<br>For altitude above 1000 m, derate 1% for every additional 100 m                                      |  |  |
| IP rating             | IP20<br>(except for the power terminal IP00)                                                                          |  |  |

## Speed/torque control mode

| Item        |                         | Specifications                                                                                                         |  |  |
|-------------|-------------------------|------------------------------------------------------------------------------------------------------------------------|--|--|
| Performance | Speed control range     | 1:6000<br>(The lower limit is the threshold within which the servo drive<br>keeps running with the rated torque load.) |  |  |
|             | Speed loop bandwidth    | 2 kHz                                                                                                                  |  |  |
|             | Torque control accuracy | ±1%                                                                                                                    |  |  |

| Item         |                        | Specifications                                                                               |  |  |
|--------------|------------------------|----------------------------------------------------------------------------------------------|--|--|
|              | Ramp time              | 0 s to 100 s<br>(This parameter can be set for acceleration and deceleration<br>separately.) |  |  |
| Input signal | Speed reference input  | Source of network-type references:                                                           |  |  |
| input signal | Torque reference input | EtherCAT communication                                                                       |  |  |

#### Position control mode

| Item                          |                                     | Specifications                                                                                                                             |  |  |
|-------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Performance Positioning time  |                                     | 1 ms to 10 ms                                                                                                                              |  |  |
| Input signal                  | Position reference                  | Source of network-type references:<br>EtherCAT communication                                                                               |  |  |
| Digital input (DI)<br>signal  | Supporting signal allocation change | P-OT (positive limit switch)<br>N-OT (negative limit switch)<br>HomeSwitch (home switch)<br>TouchProbe1 (probe 1)<br>TouchProbe2 (probe 2) |  |  |
| Digital output<br>(DO) signal | Supporting signal allocation change | 3 DOs<br>Load capacity: 50 mA<br>Voltage range: 5 V to 30 V<br>S-RDY (servo ready)<br>ALM (fault output)<br>BK (brake output)              |  |  |

#### Built-in functions

| Item                       | Specifications                                                                                                                                                                        |  |  |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Overtravel (OT) prevention | The servo drive stops immediately when P-OT or N-OT becomes active                                                                                                                    |  |  |
| Protection functions       | Protections against overcurrent, overvoltage, undervoltage,<br>overload, main circuit detection error, heatsink overheat,<br>overspeed, encoder error, CPU error, and parameter error |  |  |
| LED display                | Main power supply CHARGE indicator, 5-digit LED display                                                                                                                               |  |  |
| Vibration suppression      | Five notches<br>(including two adaptive notches), 50 Hz to 8000 Hz                                                                                                                    |  |  |

| Item                      |                             | Specifications                                                                                                                                       |  |  |
|---------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Communication<br>function | Connection protocol         | Serial port 232 and USB                                                                                                                              |  |  |
|                           | Communication protocol      | EtherCAT                                                                                                                                             |  |  |
|                           | Multi-station communication | Up to 255 slave stations 0 to 255 set through the software                                                                                           |  |  |
|                           | Axis address setting        |                                                                                                                                                      |  |  |
|                           | Function                    | Status display, user parameter setting,<br>monitored value display, alarm tracing display,<br>jogging, and speed/torque reference signal observation |  |  |
| Other                     |                             | Gain tuning, alarm record, and I/O setting                                                                                                           |  |  |

# 1.7 Communication Specifications

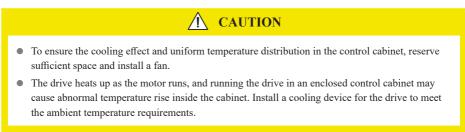
| Item                                    |                                      | Specifications                                                            |  |  |
|-----------------------------------------|--------------------------------------|---------------------------------------------------------------------------|--|--|
|                                         | Communication protocol               | EtherCAT protocol                                                         |  |  |
|                                         | Service supported                    | CoE (PDO and SDO)                                                         |  |  |
|                                         | Synchronization mode                 | Distributed clock (DC)                                                    |  |  |
|                                         | Physical layer                       | 100BASE-TX                                                                |  |  |
|                                         | Baud Rate                            | 100 Mbps (100BASE-TX)                                                     |  |  |
|                                         | Duplex mode                          | Full duplex                                                               |  |  |
|                                         | Topology                             | Ring and linear                                                           |  |  |
| Basic performance<br>of EtherCAT slaves | Transmission medium                  | Shielded Ethernet cable of Cat5e or above                                 |  |  |
|                                         | Transmission distance                | Less than 100 m between two nodes<br>(with proper environment and cables) |  |  |
|                                         | Number of slaves                     | Up to 65535 supported by protocol, not exceeding 100 in actual use        |  |  |
|                                         | EtherCAT frame length                | 44 bytes to 1,498 bytes                                                   |  |  |
|                                         | Process data                         | Up to 1486 bytes per Ethernet frame                                       |  |  |
|                                         | Synchronization jitter of two slaves | < 1 µs                                                                    |  |  |

| Item                |                                                          | Specifications                                                                                                                                  |  |  |
|---------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                     | Update time                                              | About 30 $\mu$ s for 1000 on-off inputs and outputs<br>About 100 $\mu$ s in case of 100 servo axes<br>The value varies with the interface type. |  |  |
|                     | Communication bit error ratio                            | 10 <sup>-10</sup> Ethernet standard                                                                                                             |  |  |
|                     | Number of FMMU units                                     | 8                                                                                                                                               |  |  |
| EtherCAT            | Number of storage<br>synchronization<br>management units | 8                                                                                                                                               |  |  |
| configuration units | Process data RAM                                         | 8 KB                                                                                                                                            |  |  |
|                     | Distributed clock                                        | 64 bits                                                                                                                                         |  |  |
|                     | EEPROM capacity                                          | 32 kbit<br>The initialization data is written by the EtherCAT master.                                                                           |  |  |

# Chapter 2

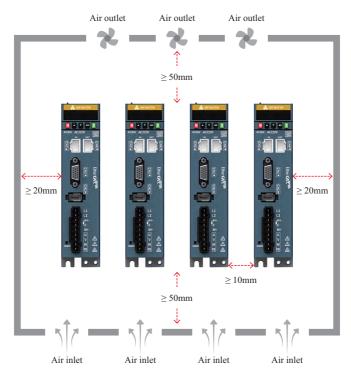
# **Mechanical Installation**

# **<u>CAUTION</u>**

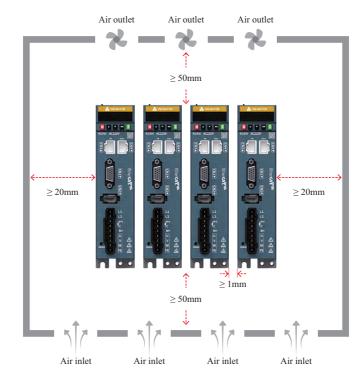

- To facilitate heat dissipation upward, fix the drive longitudinally on the mounting surface.
- When installing the drive in a control cabinet, take into consideration the temperature change of the cooling air. Rapid temperature drop of the cooling air is not allowed.
- For installation of multiple servo drives inside the cabinet, install them side by side.
- For dual-row installation, install an air guide plate.
- Use the flame-retardant mounting bracket if necessary.
- Ground the grounding terminal properly. Failure to comply may cause an electric shock or malfunction due to interference.
- Route the servo drive cables downwards to prevent liquid from flowing into the servo drive along the cables.

#### 2.1 Installation Environment

| Item                                                                                                                                   | Requirements                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Place                                                                                                                                  | Indoors                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Grid                                                                                                                                   | Overvoltage category (OVC): III                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Altitude                                                                                                                               | Below 1000 m, up to 2000 m.<br>For altitude above 1000 m, derate 1% for every additional 100 m.                                                                                                                                                                                                                                                                                                   |  |  |
| Temperature                                                                                                                            | Storage: -40°C to +70°C<br>Operation: 0°C to +55°C (For temperature above 45°C, derate 10% for every<br>additional 5°C.), with temperature change less than 0.5°C/min                                                                                                                                                                                                                             |  |  |
| Humidity                                                                                                                               | Less than 95% RH, non-condensing                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Vibration                                                                                                                              | Less than 4.9 m/s <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Heat dissipation Install and fix the device to the surface of an incombustible object and leave surrounding space for heat dissipation |                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Protection                                                                                                                             | <ul> <li>IP rating: IP20 (except for the power terminal IP00)</li> <li>Avoid places with direct sunlight exposure, moisture, and water drop</li> <li>Avoid places with corrosive, combustible, or explosive gas</li> <li>Avoid places with oil and dust</li> <li>Avoid places with strong electromagnetic interference</li> <li>Avoid places with constant vibration or physical shock</li> </ul> |  |  |


#### 2.2 Installation clearance

The JSS715N drive can only operate in an enclosed housing or control cabinet and must be fitted with a protective device and protective cover. Three clearances are allowed based on the drive power rating and heat dissipation requirements.

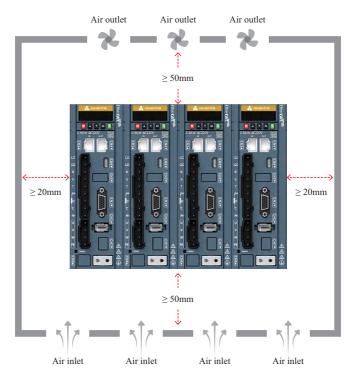



#### Clearance for side-by-side installation:

Applicable for all models.



#### Clearance for compact installation:




Applicable for models of SIZE A and SIZE B (0.2 kW to 0.75 kW).

# **<u>CAUTION</u>**

- The distance between adjacent servo drives must be equal to or greater than 1 mm. Take the installation tolerance into consideration.
- When adopting compact installation, derate the rated load rate to 75%.

#### Zero-clearance installation:



Applicable for models of SIZE C, SIZE D, and SIZE E (0.85 kW to 7.5 kW), no derating.

#### 2.3 Installation Orientation

The JSS715N drive can only be installed vertically, and improper installation orientation may cause over-temperature.



 The JSS715N series servo drive has a vertical structure and thus must be installed vertically. Improper installation orientation may cause over-temperature and then damage to the drive.

# 2.4 Installation Dimensions

#### SIZE A (rated power: 0.2 kW to 0.4 kW)

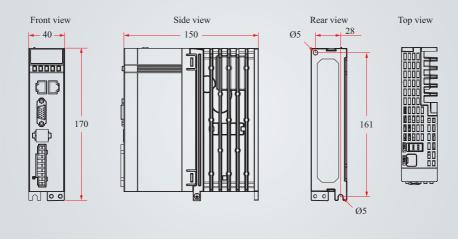
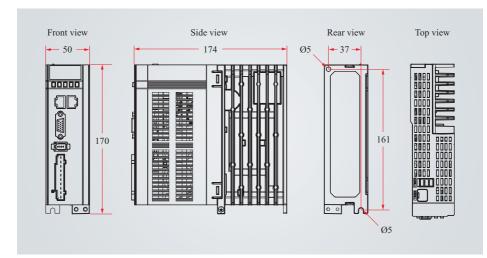




Figure 2-1 Installation dimensions for SIZE A (unit: mm)



#### SIZE B (rated power: 0.75 kW)

Figure 2-2 Installation dimensions for SIZE B (unit: mm)

#### SIZE C (rated power: 0.85 kW to 1.5 kW)

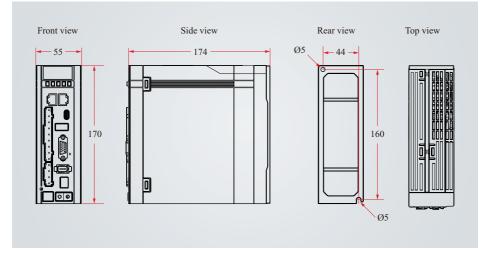



Figure 2-3 Installation dimensions for SIZE C (unit: mm)

SIZE D (rated power: 1.5 kW to 3.0 kW)

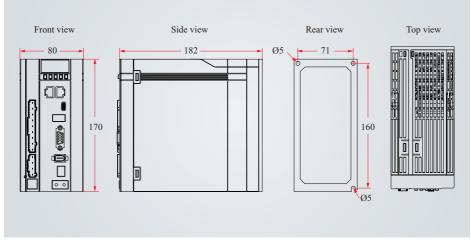



Figure 2-4 Installation dimensions for SIZE D (unit: mm)

## SIZE E (rated power: 5.0 kW to 7.5 kW)

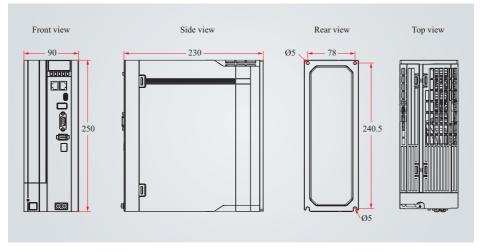



Figure 2-5 Installation dimensions for SIZE E (unit: mm)

| SIZE | Drive Model                              | Outer<br>Length | Outer<br>Height | Outer<br>Width | Weight  |
|------|------------------------------------------|-----------------|-----------------|----------------|---------|
| A    | JSS715N2T1R6, JSS715N2T2R8               | 215 mm          | 85 mm           | 195 mm         | 0.78 kg |
| В    | JSS715N2T5R5                             | 220 mm          | 95 mm           | 215 mm         | 1.04 kg |
| С    | JSS715N2T7R6, JSS715N4T3R5, JSS715N4T5R4 | 220 mm          | 95 mm           | 215 mm         | 1.20 kg |
| D    | JSS715N2T012, JSS715N4T8R4, JSS715N4T012 | 280 mm          | 120 mm          | 200 mm         | 1.70 kg |
| Е    | JSS715N4T017, JSS715N4T021, JSS715N4T026 | 325 mm          | 165 mm          | 320 mm         | 3.68 kg |

## 2.5 Installation Guide

The JSS715N series servo drive must be installed on a base through a backplate. For the mounting holes, see the dimensions diagrams of each model.

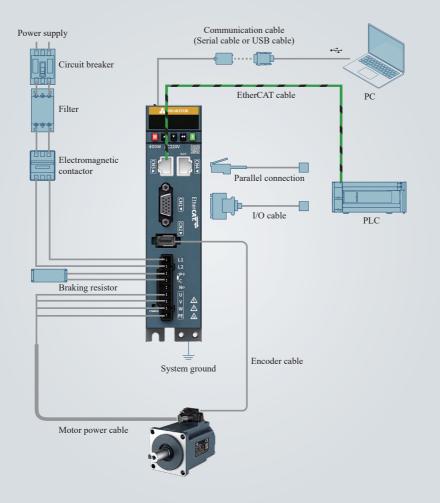
## NOTICE

#### Fixing with upper and lower screws

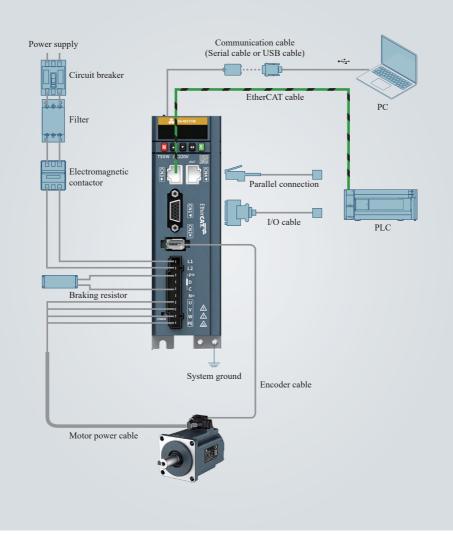
- SIZE-A/B/C: M4 screws, 1 each on top and bottom. Torque: 1.3 N·m to 1.6 N·m
- SIZE-D: M4 screws, 2 on top and 1 on bottom. Torque: 1.3 N·m to 1.6 N·m
- SIZE-E: M4 screws, 2 each on top and bottom. Torque: 1.3 N·m to 1.6 N·m



Figure 2-6 Backplate mounting



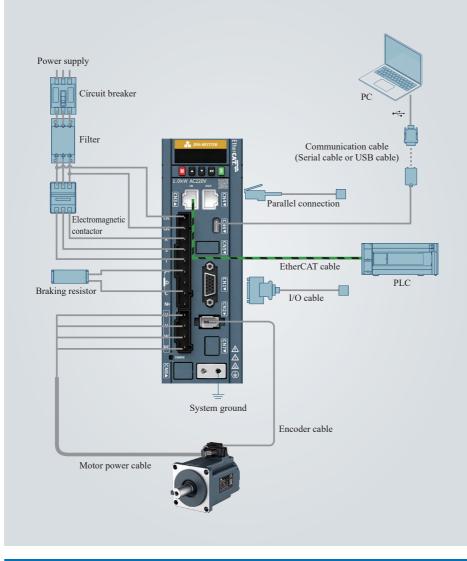

• For the tightening torque of the mounting screws, take into account the strength of the screws used and the material of the mounting position, and ensure that there is no looseness or damage.


# Chapter 3 Electrical Installation

## 3.1 System Topology

#### SIZE A

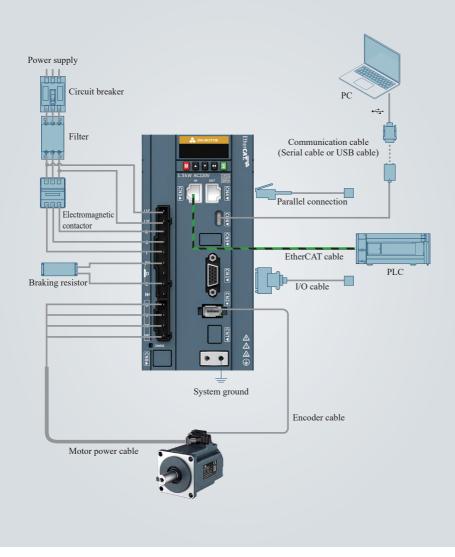



#### SIZE B



## NOTICE

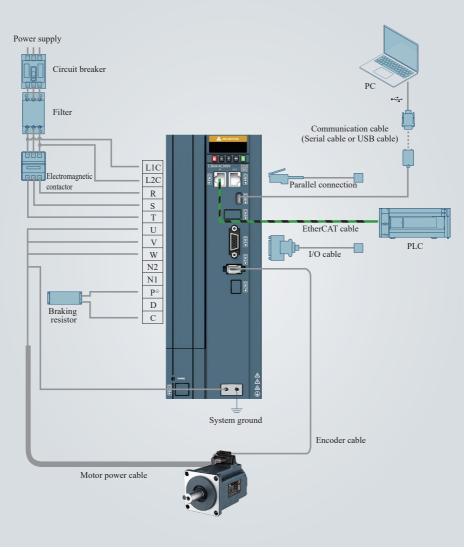
 $\bullet~$  Remove the jumper bar between terminals  $P^{\oplus}$  and D before connecting an external braking resistor.






# NOTICE

 $\bullet~$  Remove the jumper bar between terminals  $P\oplus$  and D before connecting an external braking resistor.


SIZE D



# NOTICE

 $\bullet~$  Remove the jumper bar between terminals  $P\oplus$  and D before connecting an external braking resistor.

■ SIZE E



# NOTICE

 $\bullet~$  Remove the jumper bar between terminals  $P\oplus$  and D before connecting an external braking resistor.

#### 3.2 System Wiring



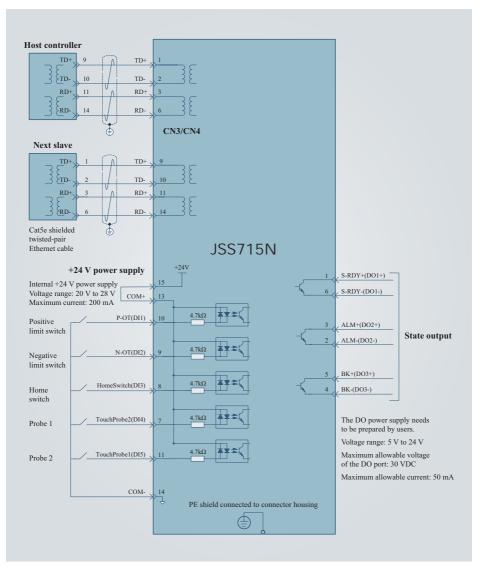
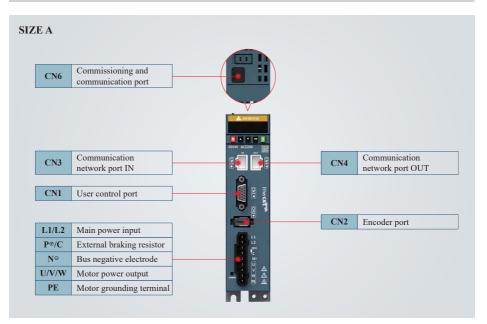
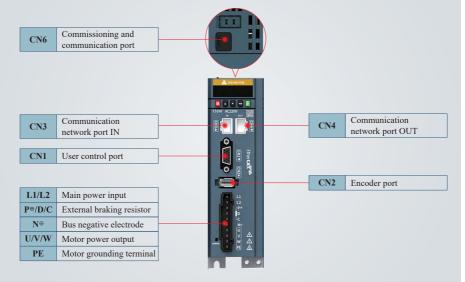
- Only electrical engineering specialists can perform wiring.
- Connect an electromagnetic contactor between the input power supply and the main circuit
  of the drive, to form a structure that can cut off the power supply on the power side of the
  drive. If no electromagnetic contactor is connected, continuous large current upon drive
  faults may cause a fire.
- Ensure that the input voltage of the drive is within the allowable range. Failure to comply
  may result in product faults.
- Connect the drive protective earth (PE) terminal to that of the control cabinet. Failure to comply may result in an electric shock.
- Insulate the connection part of power supply terminals during wiring of the power supply and main circuit. Failure to comply may result in an electric shock.
- Ground the entire system. Failure to comply may result in malfunction.
- After power-off, wait at least 10 minutes before further wiring operations because residual voltage exists after power-off. Failure to comply may result in an electric shock.
- Never power the servo drive with the IT grid. Use the TN or TT grid instead. Failure to comply may result in an electrical shock.
- Do not connect the output terminals U, V, and W of the drive to a three-phase power supply. Failure to comply may result in physical injury or a fire.
- Do not connect the motor terminals U, V, and W to a mains power supply. Failure to comply
  may result in physical injury or a fire.
- Do not power on the device before wiring is completed. Failure to comply may result in an electrical shock.

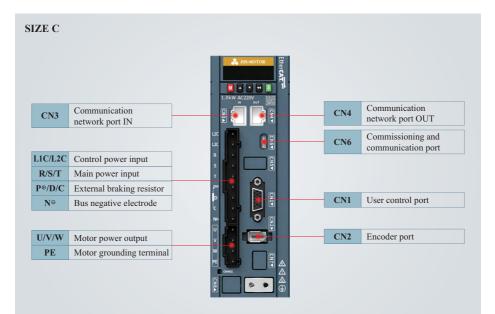


- Protect external wiring, branches, and short circuits according to local regulations.
- When using peripheral devices, read the user guide for each component and use it properly after fully confirming the precautions.
- Route the device properly. Improper wiring may cause damage to the drive and motor.
- Connect the drive to the motor directly, without connecting any electromagnetic contactor between them. Failure to comply may result in faults.
- Separate the main circuit cables from the I/O signal cables and encoder cables by at least 30 cm. Failure to comply may result in drive malfunction.
- Use twisted pairs or multi-conductor shielded twisted pairs as I/O signal cables or encoder cables. Failure to comply may result in drive malfunction.
- The maximum wiring lengths of I/O signal cables and encoder cables are 3 m and 10 m, respectively.
- Use a power filter to reduce electromagnetic interference on electronic devices around the drive.

• When wiring, do not allow conductive materials such as wire shavings to fall inside the drive.

Never place cables under heavy objects or drag cables vigorously. Failure to comply may
result in an electric shock due to cable damage.



Figure 3-1 System wiring

## 3.3 Ports



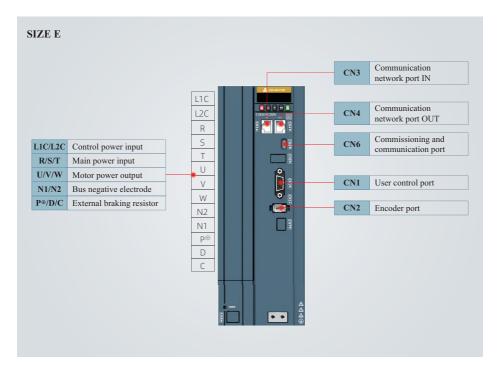
#### SIZE B

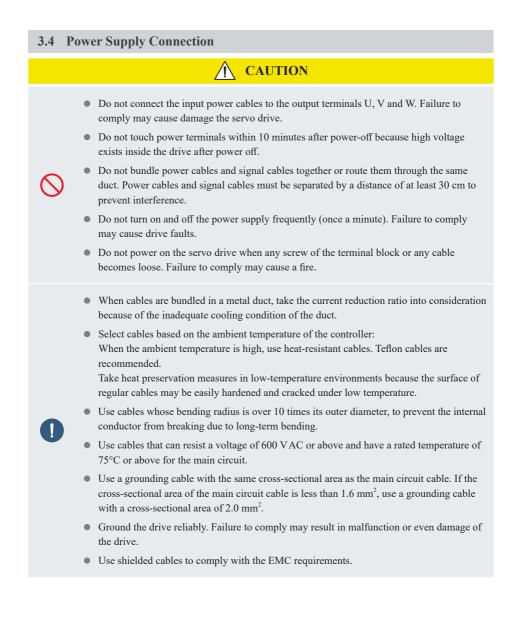




#### SIZE D







Table 3-1 Drive terminals

| Terminal                                                  | Pin                                                            | Description                                                                                   |
|-----------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
|                                                           | L1 and L2:<br>Power input terminals                            | Connected to the input power supply as per the rated voltage class on the nameplate.          |
| E L1<br>E L2<br>P⊕                                        | P⊕ and N⊖:<br>Servo bus terminals                              | Used when multiple servo drives share one DC bus.                                             |
| C<br>N°<br>U<br>V<br>W<br>PE<br>Main circuit terminals of | P⊕ and C:<br>External braking resistor<br>connection terminals | If an external braking resistor is needed, connect it between terminals P <sup>®</sup> and C. |
|                                                           | U, V, and W:<br>Servo motor connection<br>terminals            | Connected to U, V, and W phases of the servo motor.                                           |
| SIZE A                                                    | PE:<br>Motor grounding terminal                                | Connected to the grounding terminal of the motor for grounding purpose.                       |

| Terminal                                                                               | Pin                                                                | Description                                                                                                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                        | L1 and L2:<br>Power input terminals                                | Connected to the input power supply as per the rated voltage class on the nameplate.                                                                                                                                                                                                              |
|                                                                                        | P⊕ and N⊖:<br>Servo bus terminals                                  | Used when multiple servo drives share one DC bus.                                                                                                                                                                                                                                                 |
| B     C     B     C     B     V     W     PE                                           | P⊕, D, and C:<br>External braking resistor<br>connection terminals | If an external braking resistor is needed, connect it<br>between terminals P <sup>o</sup> and C.<br>Note: Remove the jumper between terminals P <sup>o</sup><br>and D before installing an external braking<br>resistor. Otherwise, the braking transistor will<br>be damaged due to overcurrent. |
| Main circuit terminals of<br>SIZE B                                                    | U, V, and W:<br>Servo motor connection<br>terminals                | Connected to U, V, and W phases of the servo motor.                                                                                                                                                                                                                                               |
|                                                                                        | PE:<br>Motor grounding terminal                                    | Connected to the grounding terminal of the motor for grounding purpose.                                                                                                                                                                                                                           |
|                                                                                        | L1C and L2C:<br>Control circuit power input<br>terminals           | Connected to the control circuit power supply as per the rated voltage class on the nameplate.                                                                                                                                                                                                    |
| L1C<br>L2C<br>R<br>S                                                                   | R, S, and T:<br>Main circuit power input<br>terminals              | Connected to the main circuit power supply as per the rated voltage class on the nameplate.                                                                                                                                                                                                       |
| • T<br>• P⊕                                                                            | P⊕ and N⊖:<br>Servo bus terminals                                  | Used when multiple servo drives share one DC bus.                                                                                                                                                                                                                                                 |
| D<br>C<br>N <sup>⊗</sup><br>U<br>V<br>W<br>PE<br>Main circuit terminals of<br>SIZE C/D | P⊕, D, and C:<br>External braking resistor<br>connection terminals | If an external braking resistor is needed, connect it<br>between terminals P <sup>®</sup> and C.<br>Note: Remove the jumper between terminals P <sup>®</sup><br>and D before installing an external braking<br>resistor. Otherwise, the braking transistor will<br>be damaged due to overcurrent. |
|                                                                                        | U, V, and W:<br>Servo motor connection<br>terminals                | Connected to U, V, and W phases of the servo motor.                                                                                                                                                                                                                                               |
|                                                                                        | PE:<br>Motor grounding terminal                                    | Connected to the grounding terminal of the motor for grounding purpose.                                                                                                                                                                                                                           |

| Terminal                                   | Pi                                                                              | n               | Description                                                                                                                                                                                                                                                                                       |
|--------------------------------------------|---------------------------------------------------------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                            | L1C and L2C:<br>Control circuit power input<br>terminals                        |                 | Connected to the control circuit power supply as per the rated voltage class on the nameplate.                                                                                                                                                                                                    |
| L1C<br>L2C<br>R<br>S                       | R, S, and T:<br>Main circuit po<br>terminals                                    | ower input      | Connected to the main circuit power supply as per the rated voltage class on the nameplate.                                                                                                                                                                                                       |
|                                            | U, V, and W:<br>Servo motor co<br>terminals                                     | onnection       | Connected to U, V, and W phases of the servo motor.                                                                                                                                                                                                                                               |
| ₩<br>1 N2<br>1 N1<br>P <sup>0</sup><br>0 D | N1, N2:<br>External reacto<br>terminals                                         | r connection    | N1 is shorted to N2 with a jumper by default. To<br>suppress harmonics in the power supply, remove<br>the jumper and connect an external DC reactor<br>between terminals N1 and N2.                                                                                                               |
| Main circuit terminals of SIZE E           | P <sup>⊙</sup> , D, and C:<br>External braking resistor<br>connection terminals |                 | If an external braking resistor is needed, connect it<br>between terminals P <sup>®</sup> and C.<br>Note: Remove the jumper between terminals P <sup>®</sup><br>and D before installing an external braking<br>resistor. Otherwise, the braking transistor will<br>be damaged due to overcurrent. |
|                                            | 10                                                                              | DI1             | Positive limit switch                                                                                                                                                                                                                                                                             |
|                                            | 9                                                                               | DI2             | Negative limit switch                                                                                                                                                                                                                                                                             |
|                                            | 8                                                                               | DI3             | Home switch                                                                                                                                                                                                                                                                                       |
|                                            | 7                                                                               | DI4             | Probe 2                                                                                                                                                                                                                                                                                           |
|                                            | 11                                                                              | DI5             | Probe 1                                                                                                                                                                                                                                                                                           |
|                                            | 15                                                                              | $+24\mathrm{V}$ | Internal 24 V power supply<br>Voltage range: 20 V to 28 V                                                                                                                                                                                                                                         |
|                                            | 14                                                                              | COM-            | Max. output current: 200 mA                                                                                                                                                                                                                                                                       |
|                                            | 13                                                                              | COM+            | Common terminal of DI terminals                                                                                                                                                                                                                                                                   |
|                                            | 1                                                                               | DO1+            | Same and the                                                                                                                                                                                                                                                                                      |
| CN1 user control<br>terminal               | 6                                                                               | DO1-            | Servo ready                                                                                                                                                                                                                                                                                       |
|                                            | 3                                                                               | DO2+            | Fault                                                                                                                                                                                                                                                                                             |
|                                            | 2                                                                               | DO2-            | raun                                                                                                                                                                                                                                                                                              |
|                                            | 5                                                                               | DO3+            | Brake                                                                                                                                                                                                                                                                                             |
|                                            | 4                                                                               | DO3-            | DIAC                                                                                                                                                                                                                                                                                              |

| Terminal                                                                               | Pi        | n        | Description                                           |
|----------------------------------------------------------------------------------------|-----------|----------|-------------------------------------------------------|
|                                                                                        | 1         | + 5 V    | 5 V power supply                                      |
|                                                                                        | 2         | 0 V      | -                                                     |
|                                                                                        | 3         | Reserved | -                                                     |
|                                                                                        | 4         | Reserved | -                                                     |
| CN2 encoder terminal                                                                   | 5         | PS+      | En en den siemel                                      |
|                                                                                        | 6         | PS-      | Encoder signal                                        |
|                                                                                        | Enclosure | PE       | Shield                                                |
|                                                                                        | 1         | TD+      | Data transmit+                                        |
|                                                                                        | 2         | TD-      | Data transmit–                                        |
| CN3 CN4                                                                                | 3         | RD+      | Data receive+                                         |
|                                                                                        | 4/5       | -        | -                                                     |
|                                                                                        | 6         | RD–      | Data receive-                                         |
|                                                                                        | 7/8       | -        | -                                                     |
| 10         2           11         3           12/13         4/5           14         6 | 9         | TD+      | Data transmit+                                        |
| 14<br>15/16<br>7/8                                                                     | 10        | TD-      | Data transmit–                                        |
| EtherCAT<br>communication terminals                                                    | 11        | RD+      | Data receive+                                         |
| communication terminais                                                                | 12/13     | -        | -                                                     |
|                                                                                        | 14        | RD–      | Data receive-                                         |
|                                                                                        | 15/16     | -        | -                                                     |
| CN6 commissioning and communication terminal                                           | Тур       | e-c      | 1: Type-c to serial, serial to USB<br>2: Type-c → USB |



# 3.4.1 Main circuit wiring

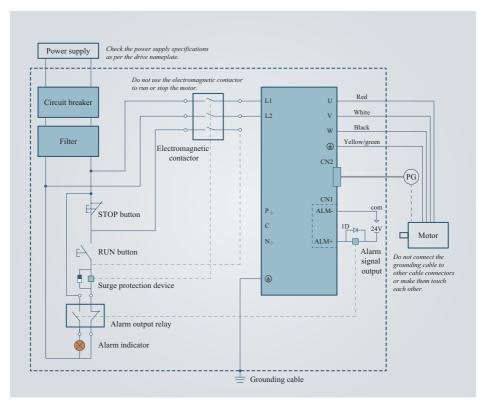



Figure 3-2 Wiring of the single-phase 220 V main circuit

# NOTICE

#### Models with a single-phase 220 V power supply

- Model SIZE-A: JSS715N2T1R6, JSS715N2T2R8
- Model SIZE-B: JSS715N2T5R5
- Model SIZE-C: JSS715N2T7R6 (The main circuit can be connected to a single-phase or a threephase 220 V power supply, depending on which one is available on site.)
- Model SIZE-D: JSS715N2T012 (The main circuit can be connected to a single-phase or a three- phase 220 V power supply, depending on which one is available on site.)

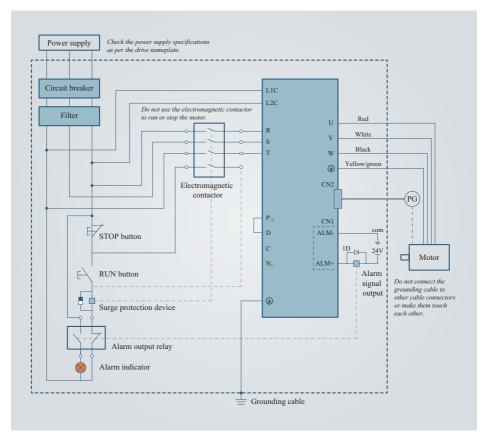



Figure 3-3 Wiring of the three-phase 220 V or 380 V main circuit

# NOTICE

#### Models with a three-phase 220 V power supply

- Model SIZE-C: JSS715N2T7R6 (The main circuit can be connected to a single-phase or a threephase 220 V power supply, depending on which one is available on site.)
- Model SIZE-D: JSS715N2T012 (The main circuit can be connected to a single-phase or a threephase 220 V power supply, depending on which one is available on site.)

# Models with a three-phase 380 V power supply

- Model SIZE-C: JSS715N4T3R5, JSS715N4T5R4
- Model SIZE-D: JSS715N4T8R4, JSS715N4T012
- Model SIZE-E: JSS715N4T017, JSS715N4T021, JSS715N4T026

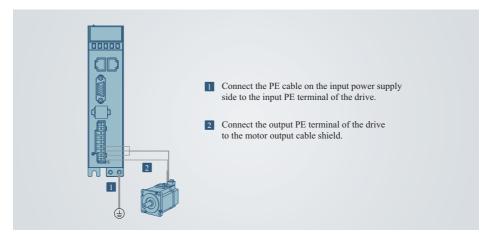
# 3.4.2 Cable specifications and recommendations

| D      | orive Model  | Rated Input<br>Current | Rated Output<br>Current | Max. Output<br>Current | Input Cable<br>Specifications |
|--------|--------------|------------------------|-------------------------|------------------------|-------------------------------|
|        |              | Single                 | e-phase 220 V           | ·                      |                               |
| SIZE A | JSS715N2T1R6 | 2.3 A                  | 1.6 A                   | 5.8 A                  | 0.75 mm <sup>2</sup>          |
| SIZE A | JSS715N2T2R8 | 4A                     | 2.8 A                   | 10.1 A                 | 0.75 mm <sup>2</sup>          |
| SIZE B | JSS715N2T5R5 | 7.9 A                  | 5.5 A                   | 16.9 A                 | 0.75 mm <sup>2</sup>          |
| SIZE C | JSS715N2T7R6 | 9.6 A                  | 7.6 A                   | 23 A                   | 1 mm <sup>2</sup>             |
| SIZE D | JSS715N2T012 | 12.8A                  | 11.6A                   | 32 A                   | 1.5 mm <sup>2</sup>           |
|        | I            | Three                  | -phase 220 V            |                        | 1                             |
| SIZE C | JSS715N2T7R6 | 5.1 A                  | 7.6 A                   | 23 A                   | 0.75 mm <sup>2</sup>          |
| SIZE D | JSS715N2T012 | 8A                     | 11.6A                   | 32 A                   | 0.75 mm <sup>2</sup>          |
|        | I            | Three                  | -phase 380 V            |                        | 1                             |
| SIZE C | JSS715N4T3R5 | 2.4 A                  | 3.5 A                   | 11 A                   | 0.75 mm <sup>2</sup>          |
| SIZE C | JSS715N4T5R4 | 3.6A                   | 5.4 A                   | 14A                    | 0.75 mm <sup>2</sup>          |
| SIZE D | JSS715N4T8R4 | 5.6A                   | 8.4 A                   | 20 A                   | 0.75 mm <sup>2</sup>          |
| SIZE D | JSS715N4T012 | 8A                     | 11.9A                   | 29.8 A                 | 0.75 mm <sup>2</sup>          |
| SIZE E | JSS715N4T017 | 12 A                   | 16.5 A                  | 41.3 A                 | 1.5 mm <sup>2</sup>           |
| SIZE E | JSS715N4T021 | 16A                    | 20.8 A                  | 52.1 A                 | 2.5 mm <sup>2</sup>           |
| SIZE E | JSS715N4T026 | 21 A                   | 25.7 A                  | 64.3 A                 | $4 \mathrm{mm}^2$             |

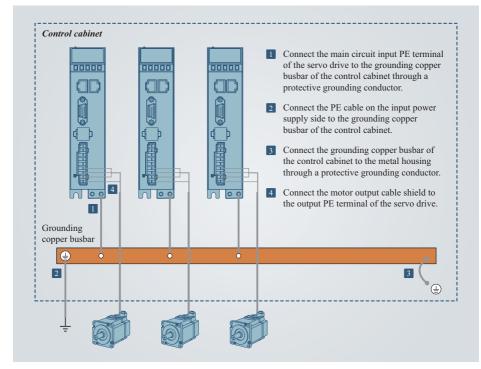
# Table 3-2 Drive input and output current and recommended cables

 Table 3-3
 Drive cable specifications and recommendations

| Cable Type  | Cable Size                | Outer Diameter (OD)    |  |
|-------------|---------------------------|------------------------|--|
|             | $4 \times 12  AWG$        | $12.2\pm0.4mm$         |  |
|             | $4 \times 14  AWG$        | $10.5\pm0.3~\text{mm}$ |  |
| Power cable | $4 \times 16  \text{AWG}$ | $9.5\pm0.4mm$          |  |
|             | $4 \times 18  \text{AWG}$ | $7.8\pm0.2\ mm$        |  |
|             | $4 \times 20  AWG$        | $6.5\pm0.2\ mm$        |  |


| Cable Type                | Cable Size                            | Outer Diameter (OD)     |  |
|---------------------------|---------------------------------------|-------------------------|--|
|                           | 4×12AWG                               | $12.9\pm0.4mm$          |  |
|                           | $4 \times 14  AWG$                    | $11.2\pm0.4\mathrm{mm}$ |  |
| Power shielded cable      | $4 \times 16  \text{AWG}$             | $10.1\pm0.4mm$          |  |
|                           | $4 \times 18$ AWG                     | $8.3\pm0.2mm$           |  |
|                           | $4 \times 20  AWG$                    | $6.5\pm0.2\text{mm}$    |  |
| Power cable + brake cable | $4 \times 20  AWG + 2 \times 24  AWG$ | $6.5\pm0.2~\mathrm{mm}$ |  |
| Brake cable               | 2×18AWG                               | $5.8\pm0.2~\text{mm}$   |  |
|                           | $2 \times 20  \text{AWG}$             | $5.0\pm0.2\ mm$         |  |

#### 3.4.3 Grounding



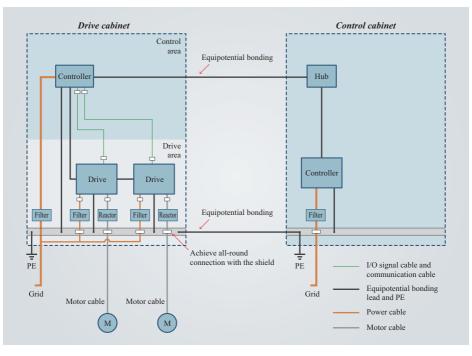

- To prevent electric shock, ground the grounding terminal properly.
- Use grounding cables that meet technical standards for electrical devices and use protective grounding conductors that meet technical specifications. and shorten the grounding cable as much as possible.
- For use of multiple servo drives, ground them all. Improper grounding of the device may cause malfunction of the servo drive and the device.
- Do not use one grounding cable for multiple devices. Improper grounding of the device may result in servo drive or device faults caused by electrical interference.
- For drives equipped with selective grounding screws for VDR and insulation resistor, remove the selective grounding screw for VDR before voltage resistance test. Failure to comply may cause the servo drive to fail the test.
- Install the servo drive on a conductive metal mounting surface. Ensure that the whole conductive bottom of the device is attached properly to the mounting surface.
- Fix the grounding screw with the recommended torque. Avoid loosening or over-tightening
  of the protective grounding conductor.

# Grounding one servo drive alone



#### Grounding multiple servo drives




#### Grounding the control cabinet system

To suppress interference in the control cabinet, isolate the interference source from devices that may be interfered with. Divide the control cabinet into multiple EMC compartments or use multiple control cabinets based on the intensity of interference sources.



#### System installation principles:

- Place the control unit and the drive unit in two separate control cabinets.
- For installation involving multiple control cabinets, use a grounding cable with a cross-sectional area of at least 16 mm<sup>2</sup> to connect the control cabinets. This is to ensure equipotentiality between the cabinets.
- If only one control cabinet is used, place different devices in different compartments of the control cabinet based on signal intensity.
- Apply equipotential bonding to devices in different compartments inside the control cabinet.
- Shield all communication and signal cables drawn from the control cabinet.
- Place the power input filter in a position near the input interface of the control cabinet.
- Apply spray coating to each grounding point in the control cabinet.



# Recommended grounding cable lugs for main circuit

| Drive  | Drive Model  |        | Lug Model of<br>Power Cable | Lug Model of<br>Brake Cable | Lug Model of<br>PE Cable |
|--------|--------------|--------|-----------------------------|-----------------------------|--------------------------|
| SIZE A | JSS715N2T1R6 | 1.6A   | E1008                       | E0508                       | TVR2-4                   |
| SIZE A | JSS715N2T2R8 | 2.8 A  | E1008                       | E0508                       | TVR2-4                   |
| SIZE B | JSS715N2T5R5 | 5.5 A  | E1008                       | E0508                       | TVR2-4                   |
| SIZE C | JSS715N2T7R6 | 7.6A   | E1508                       | E1008                       | TVR2-4                   |
| SIZE C | JSS715N4T3R5 | 3.5 A  | E1508                       | E1008                       | TVR2-4                   |
| SIZE C | JSS715N4T5R4 | 5.4 A  | E1508                       | E1008                       | TVR2-4                   |
| SIZE D | JSS715N2T012 | 11.6A  | E1508                       | E1008                       | TVR2-4                   |
| SIZE D | JSS715N4T8R4 | 8.4 A  | E1508                       | E1008                       | TVR2-4                   |
| SIZE D | JSS715N4T012 | 11.9A  | E1508                       | E1008                       | TVR2-4                   |
| SIZE E | JSS715N4T017 | 16.5 A | TVS1.25-4                   | E1008                       | TVR1.25-4                |
| SIZE E | JSS715N4T021 | 20.8 A | TVS2-4                      | E1008                       | TNR2-4                   |
| SIZE E | JSS715N4T026 | 25.7 A | TVS3.5-4                    | E1008                       | TNR3.5-4                 |

Table 3-4 Recommended grounding cable lugs for power circuit

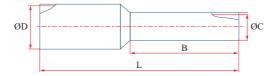



Table 3-5 Lug models and dimensions

| Lug model | L     | В    | ØC     | ØD     | Color  |
|-----------|-------|------|--------|--------|--------|
| E0508     | 14 mm | 8 mm | 1.0 mm | 2.6 mm | Orange |
| E1008     | 14 mm | 8 mm | 1.4 mm | 3.0 mm | Yellow |
| E1508     | 14 mm | 8 mm | 1.7 mm | 3.5 mm | Red    |

| Lug | model | D     | d2    | В     | Appearance |
|-----|-------|-------|-------|-------|------------|
| TVR | 2-4   | 4.5mm | 4.3mm | 8.5mm |            |

Table 3-6 Dimensions and appearance of TVR2-4 cable lugs of the grounding cable

# 3.5 Motor Connection

Terminal-type motor

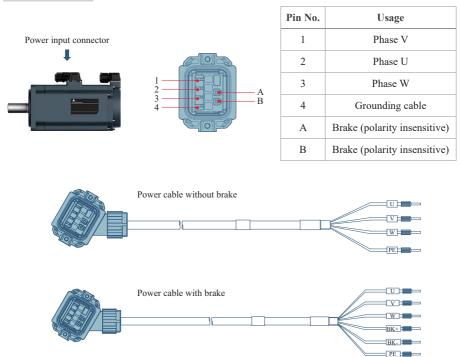
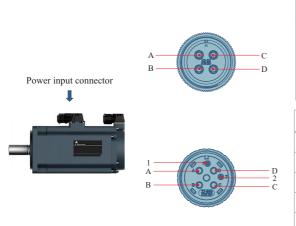




Figure 3-4 Power cable for terminal-type motor

#### Aviation plug-type motor



| Pin No. | Usage           |  |
|---------|-----------------|--|
| А       | Phase U         |  |
| В       | Phase V         |  |
| С       | Phase W         |  |
| D       | Grounding cable |  |
| Pin No. | Usage           |  |
| А       | Phase U         |  |
| В       | Phase V         |  |
| С       | Phase W         |  |

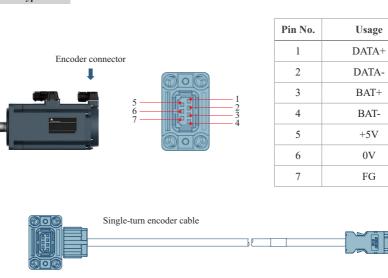
Grounding cable

Brake (polarity insensitive)

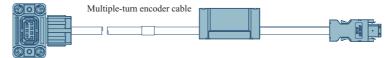
Brake (polarity insensitive)

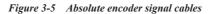
D

1


2

# 3.6 Encoder Connection (CN2)

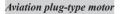

# **<u>CAUTION</u>**

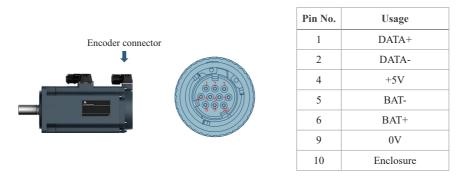

#### Precautions for wiring of encoder signal cables:

- Ground the shield on the drive side and the motor side. Otherwise, the drive will report false alarms.
- Do not connect cables to "reserved" terminals.
- When determining the length of the encoder cable, take into full account the voltage drop caused by cable resistance and signal attenuation caused by distributed capacitance. Use shielded twisted pairs above 26 AWG (as per UL2464 standard) and keep the length within 10 m.



#### Terminal-type motor






#### **Battery box precautions:**

- Install the battery in the correct direction. Do not pinch the connector cable when closing the battery box cover.
- Do not disassemble the battery because the internal electrolyte may spread out and cause physical injury.
- Do not short circuit the battery. Failure to comply may deteriorate the battery power and even incur the risk of explosion due to violent overheating.
- Before discarding the battery, insulate the battery with tape and then dispose of it according to local regulations.





# 3.7 Control Signal Connection (CN1)

#### 3.7.1 I/O signal

Use shielded signal cables to protect I/O signal circuits against strong interference noise at the periphery.

- Use a separate shielded cable for each type of analog signal.
- Shielded twisted pairs are recommended as digital signal cables.

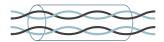
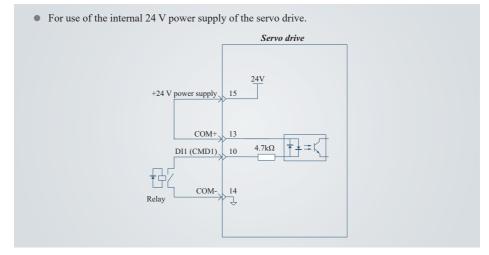


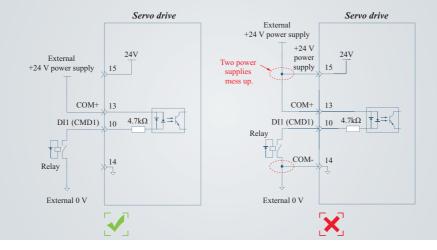

Figure 3-6 Shielded twisted pairs



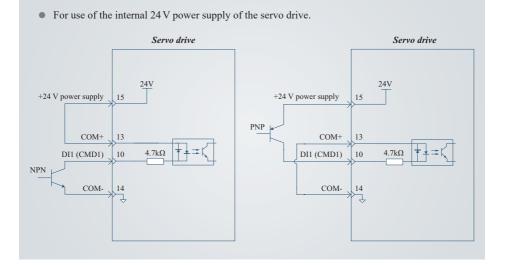
 To avoid electromagnetic interference, keep a distance of at least 30 cm between I/O signal cables and power cables (input RST cables, output UVW cables, DC bus, and braking cables).


# 3.7.2 Digital input/output (DI/DO) signals

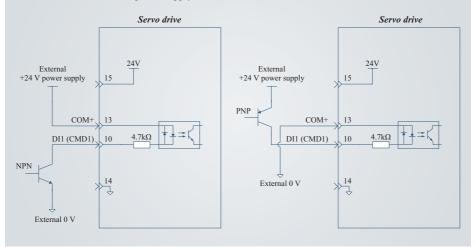
#### DI circuits


# NOTICE

• The circuits for DI1 to DI5 are the same. The following takes the DI1 circuit as an example.


#### When the host controller adopts relay output:




• For use of an external power supply.



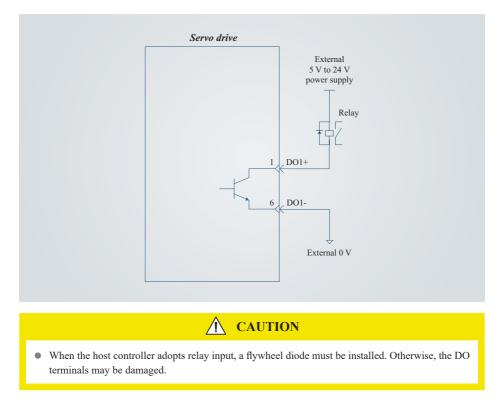
#### When the host controller adopts open collector output:



• For use of an external power supply.



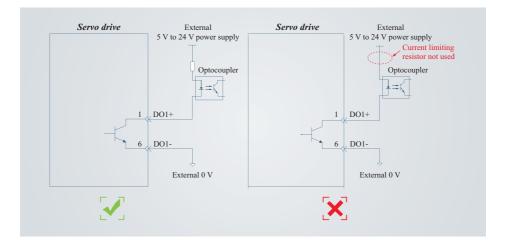
# **<u>CAUTION</u>**


• PNP and NPN inputs cannot be used together in the same circuit.

### DO circuits

# NOTICE

• The circuits of DO1 to DO3 are the same. The following takes the DO1 circuit as an example.


#### When the host controller adopts relay input:



When the host controller adopts optocoupler input:

# NOTICE

 The maximum allowable voltage and maximum current capacity of the optocoupler output circuit inside the servo drive are 30 VDC and DC50 mA, respectively.



# 3.7.3 Wiring of the brake

Some servo motors have a brake inside. The motor brake is used to prevent the movement of the servo motor shaft and keep the motor locked in the position when the servo motor may move unexpectedly due to external forces or its own weight during non-running conditions.



• The motor brake can only be used on a stopped motor and is only used to keep the load stationary. Do not use it to brake a moving load.

# NOTICE

- The brake coil has no polarity.
- Switch off the S-ON signal after the servo motor stops.
- When the motor with a built-in brake runs, the brake may generate a click sound, which does not
  affect its function.
- When brake coils are energized (the brake is released), flux leakage may occur on the shaft end. Pay special attention when using magnetic sensors near the motor.

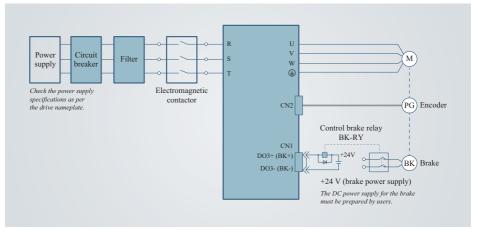



Figure 3-7 Wiring of the brake

#### Precautions during wiring:

When determining the length of the motor brake cable, take into full account the voltage drop caused by cable resistance. The input voltage must be at least 21.6 V to enable the brake to work properly.

| Motor Model           | Holding Torque | Rated<br>Power | Power Supply<br>Voltage |
|-----------------------|----------------|----------------|-------------------------|
| JSSMK1-H2T0130BC16    | 0.32 N·m       | 6.9 W          | 24 V DC                 |
| JSSMK1-H2T0130BC26    | 0.32 N·m       | 6.9 W          | 24 V DC                 |
| JSSMK1-H2T0230BE16    | 1.27 N·m       | 7.3 W          | 24 V DC                 |
| JSSMK1-H2T0230BE26    | 1.27 N·m       | 7.3 W          | 24 V DC                 |
| JSSMK1-H2T0430BE16    | 1.27 N·m       | 7.3 W          | 24 V DC                 |
| JSSMK1-H2T0430BE26    | 1.27 N·m       | 7.3 W          | 24 V DC                 |
| JSSMK1-H2T0830BE16    | 3.2 N·m        | 8.5 W          | 24 V DC                 |
| JSSMK1-H2T0830BE26    | 3.2 N·m        | 8.5 W          | 24 V DC                 |
| JSSMK1-H2T1030BE16-80 | 3.2 N·m        | 8.5 W          | 24 V DC                 |
| JSSMK1-H2T1030BE26-80 | 3.2 N·m        | 8.5 W          | 24 V DC                 |
| JSSMK1-H2T1030BE16    | 9 N·m          | 22 W           | 24 V DC                 |
| JSSMK1-H2T1030BE26    | 9 N·m          | 22 W           | 24 V DC                 |

| Table 3-7 | Brake | specifications |
|-----------|-------|----------------|
|-----------|-------|----------------|

| Motor Model        | Holding Torque | Rated<br>Power | Power Supply<br>Voltage |
|--------------------|----------------|----------------|-------------------------|
| JSSMK1-H4T1030BE16 | 9 N∙m          | 22 W           | 24 V DC                 |
| JSSMK1-H4T1030BE26 | 9 N·m          | 22 W           | 24 V DC                 |
| JSSMK1-H2T1530BE16 | 9 N·m          | 22 W           | 24 V DC                 |
| JSSMK1-H2T1530BE26 | 9 N·m          | 22 W           | 24 V DC                 |
| JSSMK1-H4T1530BE16 | 9 N·m          | 22 W           | 24 V DC                 |
| JSSMK1-H4T1530BE26 | 9 N∙m          | 22 W           | 24 V DC                 |
| JSSMK1-H4T2030BE16 | 9 N∙m          | 22 W           | 24 V DC                 |
| JSSMK1-H4T2030BE26 | 9 N∙m          | 22 W           | 24 V DC                 |
| JSSMK1-H4T2530BE16 | 9 N∙m          | 22 W           | 24 V DC                 |
| JSSMK1-H4T2530BE26 | 9 N∙m          | 22 W           | 24 V DC                 |
| JSSMK1-H2T0915BE16 | 12 N·m         | 23 W           | 24 V DC                 |
| JSSMK1-H2T0915BE26 | 12 N·m         | 23 W           | 24 V DC                 |
| JSSMK1-H4T0915BE16 | 12 N·m         | 23 W           | 24 V DC                 |
| JSSMK1-H4T0915BE26 | 12 N·m         | 23 W           | 24 V DC                 |
| JSSMK1-H2T1315BE16 | 12 N·m         | 23 W           | 24 V DC                 |
| JSSMK1-H2T1315BE26 | 12 N·m         | 23 W           | 24 V DC                 |
| JSSMK1-H4T1315BE16 | 12 N·m         | 23 W           | 24 V DC                 |
| JSSMK1-H4T1315BE26 | 12 N·m         | 23 W           | 24 V DC                 |
| JSSMK1-H4T1815BE16 | 12 N·m         | 23 W           | 24 V DC                 |
| JSSMK1-H4T1815BE26 | 12 N·m         | 23 W           | 24 V DC                 |
| JSSMK1-H4T2915BE16 | 50 N·m         | 36 W           | 24 V DC                 |
| JSSMK1-H4T2915BE26 | 50 N·m         | 36 W           | 24 V DC                 |
| JSSMK1-H4T4415BE16 | 50 N·m         | 36 W           | 24 V DC                 |
| JSSMK1-H4T4415BE26 | 50 N·m         | 36 W           | 24 V DC                 |
| JSSMK1-H4T5515BE16 | 50 N·m         | 36 W           | 24 V DC                 |
| JSSMK1-H4T5515BE26 | 50 N·m         | 36 W           | 24 V DC                 |
| JSSMK1-H4T7515BE16 | 50 N·m         | 36 W           | 24 V DC                 |
| JSSMK1-H4T7515BE26 | 50 N·m         | 36 W           | 24 V DC                 |

# 3.8 Communication Signal Connection (CN3 and CN4)

Communication signals are connected by EtherCAT network cables. Connect CN3 (IN) to the communication port of the master and CN4 (OUT) to a slave.

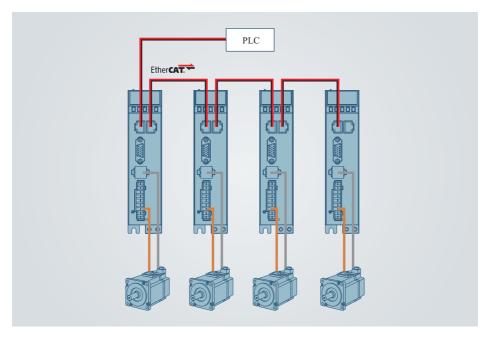
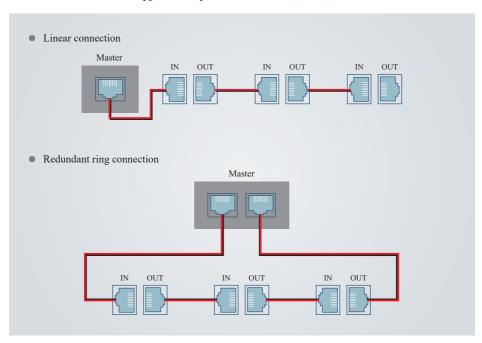




Figure 3-8 Communication networking topology

# **CAUTION**

- To enhance the system's anti-interference capability, the EtherCAT communication cable must be an Ethernet Category 5 (100BASE-TX) network cable or high-strength shielded network cable of no more than 100 m.
- When multiple EtherCAT servo drives are installed, connect the network cables in the sequence of left-in and right-out.



### EtherCAT communication supports multiple connection methods:

Figure 3-9 EtherCAT communication connection



• When a redundant ring network is used, the EtherCAT Enhanced Link Check function must be enabled, which will take effect upon next power-on of the servo drive.

# 3.9 Communication Terminal Connection (CN6)

You can connect the drive to the PC through the CN6 terminal by using a serial cable (two-part wiring: Type-c to serial, and serial to USB) or a USB cable.

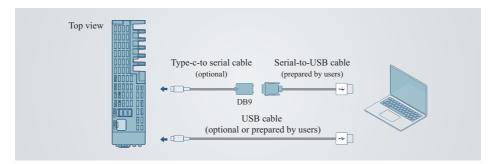
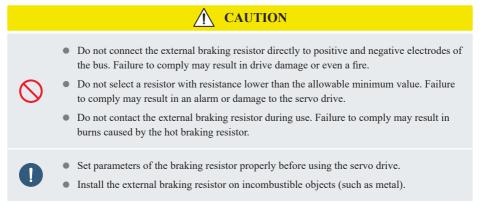




Figure 3-10 Communication terminal connection

| DB9 Female Connector (Hole Type)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pin No. | Signal | Description     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|-----------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2       | RXD    | PC receive end  |
| $ \bigcirc \overbrace{ \begin{smallmatrix} 6 & 7 & 8 & 9 \\ 0 & 0 & 0 & 0 \\ 1 & 2 & 3 & 4 & 5 \\ 0 & 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ $ | 3       | TXD    | PC transmit end |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5       | GND    | Ground          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Housing | PE     | Shield          |

# 3.10 Braking Resistor Connection



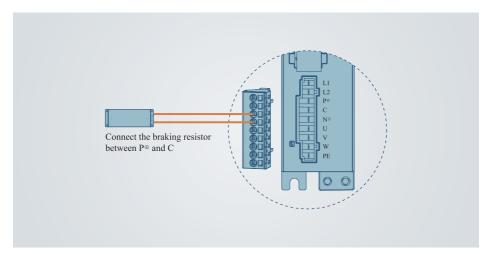



Figure 3-11 Connection of the external braking resistor

# NOTICE

• The above connection example is for model SIZE A. Remove the jumper bar between terminals P⊕ and D before connecting an external braking resistor for other models.

|        |              | Built-in braking resistor |                | Minimum<br>Allowable               | Maximum Braking                 |  |
|--------|--------------|---------------------------|----------------|------------------------------------|---------------------------------|--|
| D      | rive Model   | Resistance                | Resistor Power | Resistance of<br>External Resistor | Energy Absorbed<br>by Capacitor |  |
| SIZE A | JSS715N2T1R6 | -                         | -              | 45 Ω                               | 9.3 J                           |  |
| SIZE A | JSS715N2T2R8 | -                         | -              | 45 Ω                               | 26.29 J                         |  |
| SIZE B | JSS715N2T5R5 | 50 Ω                      | 50 W           | 40 Ω                               | 22.41 J                         |  |
| SIZE C | JSS715N2T7R6 | 25 Ω                      | 80 W           | 20 Ω                               | 26.70 J                         |  |
| SIZE C | JSS715N4T3R5 | 100 Ω                     | 80 W           | 80 Ω                               | 34.28 J                         |  |
| SIZE C | JSS715N4T5R4 | 100 Ω                     | 80 W           | 60 Ω                               | 34.28 J                         |  |
| SIZE D | JSS715N2T012 | 25 Ω                      | 80 W           | 15 Ω                               | 26.70 J                         |  |
| SIZE D | JSS715N4T8R4 | 50 Ω                      | 80 W           | 45 Ω                               | 50.41 J                         |  |
| SIZE D | JSS715N4T012 | 50 Ω                      | 80 W           | 40 Ω                               | 50.41 J                         |  |

 Table 3-8
 Specifications of the braking resistor

|        |              | Built-in braking resistor |                | Minimum<br>Allowable               | Maximum Braking                 |
|--------|--------------|---------------------------|----------------|------------------------------------|---------------------------------|
| D      | rive Model   | Resistance                | Resistor Power | Resistance of<br>External Resistor | Energy Absorbed<br>by Capacitor |
| SIZE E | JSS715N4T017 | 35 Ω                      | 100 W          | 35 Ω                               | 82.67 J                         |
| SIZE E | JSS715N4T021 | 35 Ω                      | 100 W          | 25 Ω                               | 100.82 J                        |
| SIZE E | JSS715N4T026 | 35 Ω                      | 100 W          | 25 Ω                               | 100.82 J                        |

# **Chapter 4**

# **Function Overview**

# 4.1 Basic Functions of the Servo Drive

#### 4.1.1 Function Overview

The servo system consists of three critical parts: the servo drive, servo motor, and encoder. The servo drive processes input signals and feedback signals to precisely control the position, speed, and torque of the servo motor.

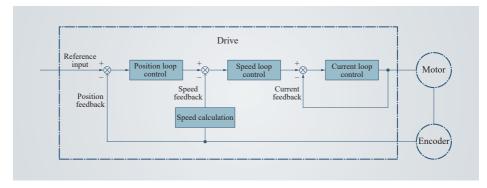



Figure 4-1 Structure of a servo system

| Para. No. | Name       | Description                                                              | Default |
|-----------|------------|--------------------------------------------------------------------------|---------|
| C00.00    | Servo mode | 0: Position mode<br>1: Speed mode<br>2: Torque mode<br>10: EtherCAT mode | 10      |

#### 4.1.2 Profile Position (PP) Mode

Position control is the most important and common control mode of the servo system. In PP mode, the drive can find the absolute position and relative position of the motor. You can set the target position, start speed, stop speed, acceleration rate, and deceleration rate on the host controller. When the PP mode is enabled, the object dictionary servo mode (6060h) must be set to 1.

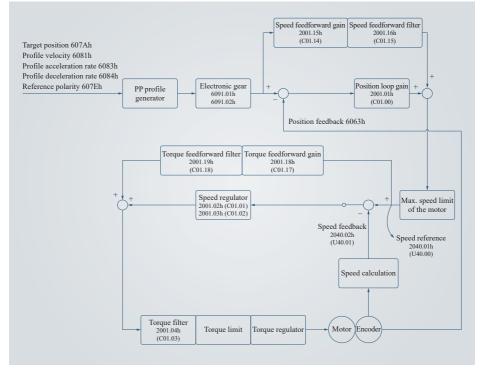
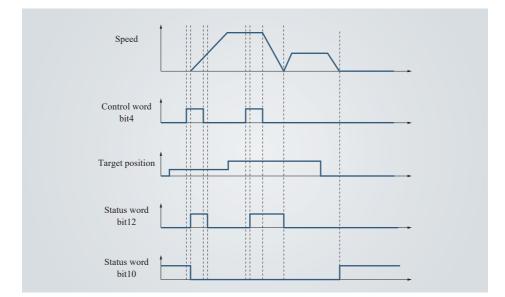
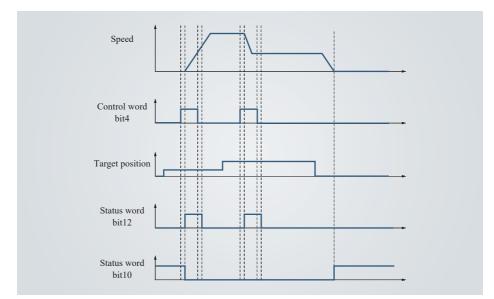



Figure 4-2 Control flow in PP mode

#### Basic configurations recommended in PP mode:


| RPDO                       | ТРДО                             | Remarks   |
|----------------------------|----------------------------------|-----------|
| 6040h Control word         | 6041h Status word                | Mandatory |
| 607Ah Target Position      | 6064h Position actual value      | Mandatory |
| 6081h Profile velocity     | -                                | Mandatory |
| 6083h Profile acceleration | -                                | Optional  |
| 6084h Profile deceleration | -                                | Optional  |
| 6060h Modes of operation   | 6061h Modes of operation display | Optional  |

#### Control word settings in PP mode:


The following table lists the meanings of each bit in the control word (6040h) in PP mode.

| Bit | Name                      | Description                                                                                                                                                                                                                                                |
|-----|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0   | Switch on                 | This bit must be set to 1 when the servo drive is enabled.                                                                                                                                                                                                 |
| 1   | Enable voltage            | This bit must be set to 1 when the servo drive is enabled.                                                                                                                                                                                                 |
| 2   | Quick stop                | This bit must be set to 1 when the servo drive is enabled. If this bit is set to 0, the servo drive stops quickly.                                                                                                                                         |
| 3   | Operation enable          | This bit must be set to 1 when the servo drive is enabled.                                                                                                                                                                                                 |
| 4   | Position reference update | When this bit changes from 0 to 1, the next group of position<br>reference parameters are loaded, including the target position<br>or position increment, start speed, operating speed, acceleration<br>rate, and deceleration rate.                       |
| 5   | Immediate update          | <ul><li>0: Execute a new reference after the current position reference is executed.</li><li>1: Stop executing the current position reference and execute a new one.</li></ul>                                                                             |
| 6   | Position reference type   | 0: Absolute position reference<br>1: Relative position reference                                                                                                                                                                                           |
| 7   | Fault reset               | The system performs fault reset once when this bit changes<br>from 0 to 1.<br>If system needs fault reset for multiple times, this bit must<br>change from 0 to 1 for multiple times. When this bit is set to 1,<br>other control references are inactive. |
| 8   | Halt                      | 0: Inactive<br>1: Active<br>The system stops executing references when this bit is set to 1.                                                                                                                                                               |

When bit 5 in the control word (6040h) is set to 0, the system waits for the current position reference to be executed before executing the new reference to update the position data in the motion, as shown in the following figure.



When bit 5 in the control word (6040h) is set to 1, the system stops executing the current position reference and immediately executes the new reference to update the position data in the motion, as shown in the following figure.



# Status word definition in PP mode:

The following table lists the meanings of each bit in the status word (6041h) in PP mode.

| Bit | Name                                       | Description                                                                                                                              |
|-----|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| 0   | Ready to switch on                         | 0: Inactive<br>1: Active (indicating that the servo drive can be enabled)                                                                |
| 1   | Switched on                                | 0: Inactive<br>1: Active (indicating that the servo drive can be enabled)                                                                |
| 2   | Operation enabled                          | 0: Inactive<br>1: Active (indicating that the servo drive has been enabled)                                                              |
| 3   | Servo drive fault                          | 0: No fault<br>1: Fault occurred                                                                                                         |
| 4   | Voltage enabled                            | 0: Inactive<br>1: Active (indicating that the servo drive can be enabled)                                                                |
| 5   | Quick stop                                 | 0: Active<br>1: Inactive                                                                                                                 |
| 6   | Switch on disabled                         | 0: Inactive<br>1: Active (indicating that the servo drive cannot be enabled)                                                             |
| 7   | Alarm                                      | 0: No alarm<br>1: Alarm generated                                                                                                        |
| 9   | Remote control                             | 0: Inactive<br>1: Active (indicating that the control word has taken effect)                                                             |
| 10  | Position reach                             | Not supported. This bit remains 1 all the time.                                                                                          |
| 11  | Internal software position limit status    | 0: Software position limit not reached<br>1: Software position limit reached                                                             |
| 12  | Receiving status of new position reference | 0: Position reference update allowed<br>1: Position reference update not allowed                                                         |
| 13  | Position deviation error                   | 0: The position deviation value is within the preset range (6065h)<br>1: The position deviation value is beyond the preset range (6065h) |
| 14  | Manufacturer-specific                      | Not supported                                                                                                                            |
| 15  | Homing completion                          | 0: Homing not completed<br>1: Homing completed                                                                                           |

# Parameters related to PP mode:

Dictionary objects related to PP mode:

| Index | Sub-<br>index | Name                                   | Access | Data Type | Value Range               | Default    |
|-------|---------------|----------------------------------------|--------|-----------|---------------------------|------------|
| 6040h | 00            | Control word                           | RW     | U16       | 0 to 65535                | 0          |
| 6041h | 00            | Status word                            | RO     | U16       | -                         | -          |
| 6060h | 00            | Operation mode                         | RW     | 18        | 0 to 10                   | 0          |
| 6061h | 00            | Mode display                           | RO     | 18        | -                         | -          |
| 6064h | 00            | Position feedback                      | RO     | I32       | -                         | -          |
| 6065h | 00            | Excessive position deviation threshold | RW     | U32       | 0 to $(2^{32}-1)$         | 3145728    |
| 6066h | 00            | Following error time out               | RW     | U16       | 0 to 65535                | 0          |
| 6067h | 00            | Position reach threshold               | RW     | U32       | 0 to $(2^{32}-1)$         | 734        |
| 6068h | 00            | Position reach time window             | RW     | U16       | 0 to 65535                | 0          |
| 607Ah | 00            | Target position                        | RW     | I32       | $-2^{31}$ to $(2^{31}-1)$ | 0          |
| 607Eh | 00            | Reference polarity                     | RW     | U8        | 0 to 255                  | 0          |
| 607Fh | 00            | Max. speed                             | RW     | U32       | 0 to $(2^{32}-1)$         | 104857600  |
| 6081h | 00            | Profile operating speed                | RW     | U32       | 0 to $(2^{32}-1)$         | 1747627    |
| 6083h | 00            | Profile acceleration rate              | RW     | U32       | 0 to $(2^{32}-1)$         | 1747626667 |
| 6084h | 00            | Profile deceleration rate              | RW     | U32       | 0 to $(2^{32}-1)$         | 1747626667 |

# PP mode example:

Start and operation processes in PP mode:

| Address | Name                 | Value                                                                                            |
|---------|----------------------|--------------------------------------------------------------------------------------------------|
| 6060h   | Control mode         | 1                                                                                                |
| 607Ah   | Position reference   | Set by the user                                                                                  |
| 6081h   | Set speed in PP mode | The rotation speed is 600 rpm for writing data of 1310720 bits at the default gear ratio of 1:1. |

| Address        | Name                                         | Value                                                                             |
|----------------|----------------------------------------------|-----------------------------------------------------------------------------------|
|                | Enable                                       | Random number $\rightarrow 6 \rightarrow 7 \rightarrow 15$                        |
|                | Alarm clearance                              | Random number $\rightarrow$ 128 (rising edge active, if the alarm can be cleared) |
| 6040h (control | Set absolute position (not immediate update) | 6→7→15→31                                                                         |
| word)          | Set absolute position (immediate update)     | 6→7→47→63                                                                         |
|                | Set relative position (not immediate update) | 6→7→79→95                                                                         |
|                | Set relative position (immediate update)     | 6→7→111→127                                                                       |
| 6083h          | Profile acceleration rate                    | Default: 13107200                                                                 |
| 6084h          | Profile deceleration rate                    | Default: 1310720                                                                  |

# 4.1.3 Profile Velocity (PV) Mode

In PV mode, the host controller sends the target velocity, acceleration rate, and deceleration rate to the servo drive. The servo drive generates the speed reference profiles and executes speed control and torque control. When the PV mode is enabled, the object dictionary control mode (6060h) must be set to 3.

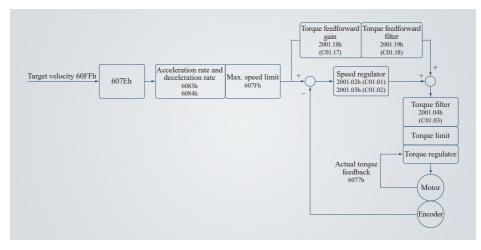



Figure 4-3 Control flow in PV mode

# Basic configurations recommended in PV mode:

| RPDO                       | ТРДО                             | Remarks   |
|----------------------------|----------------------------------|-----------|
| 6040h Control word         | 6041h Status word                | Mandatory |
| 60FFh Target Velocity      | -                                | Mandatory |
| -                          | 6064h Position actual value      | Optional  |
| -                          | 606Ch Velocity actual value      | Optional  |
| 6083h Profile acceleration | -                                | Optional  |
| 6084h Profile deceleration | -                                | Optional  |
| 6060h Modes of operation   | 6061h Modes of operation display | Optional  |

#### Control word settings in PV mode:

The following table lists the meanings of each bit in the control word (6040h) in PV mode.

| Bit    | Name                 | Description                                                                                                                                                                                                                                             |  |  |
|--------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 0      | Switch on            | This bit must be set to 1 when the servo drive is enabled.                                                                                                                                                                                              |  |  |
| 1      | Enable voltage       | This bit must be set to 1 when the servo drive is enabled.                                                                                                                                                                                              |  |  |
| 2      | Quick stop           | This bit must be set to 1 when the servo drive is enabled. If this bit is set to 0, the servo drive stops quickly.                                                                                                                                      |  |  |
| 3      | Operation enable     | This bit must be set to 1 when the servo drive is enabled.                                                                                                                                                                                              |  |  |
| 4 to 6 | Reserved for PV mode | Not supported                                                                                                                                                                                                                                           |  |  |
| 7      | Fault reset          | The system performs fault reset once when this bit changes<br>from 0 to 1. If system needs fault reset for multiple times, this<br>bit must change from 0 to 1 for multiple times.<br>When this bit is set to 1, other control references are inactive. |  |  |
| 8      | Halt                 | 0: Inactive<br>1: Active (The system halts when this bit is set to 1 and<br>executes references when this bit is set to 0.)                                                                                                                             |  |  |
| 9      | Reserved for PV mode | Not supported                                                                                                                                                                                                                                           |  |  |
| 10     | Reserved for PV mode | Not supported                                                                                                                                                                                                                                           |  |  |

#### Status word definition in PV mode:

The following table lists the meanings of each bit in the status word (6041h) in PV mode.

| Bit      | Name                                    | Description                                                                  |  |  |
|----------|-----------------------------------------|------------------------------------------------------------------------------|--|--|
| 0        | Ready to switch on                      | 0: Inactive<br>1: Active (indicating that the servo drive can be enabled)    |  |  |
| 1        | Switched on                             | 0: Inactive<br>1: Active (indicating that the servo drive can be enabled)    |  |  |
| 2        | Operation enabled                       | 0: Inactive<br>1: Active (indicating that the servo drive has been enabled)  |  |  |
| 3        | Servo drive fault                       | 0: No fault<br>1: Fault occurred                                             |  |  |
| 4        | Voltage enabled                         | 0: Inactive<br>1: Active (indicating that the servo drive can be enabled)    |  |  |
| 5        | Quick stop                              | 0: Active<br>1: Inactive                                                     |  |  |
| 6        | Switch on disabled                      | 0: Inactive<br>1: Active (indicating that the servo drive cannot be enabled) |  |  |
| 7        | Alarm                                   | 0: No alarm<br>1: Alarm generated                                            |  |  |
| 9        | Remote control                          | 0: Inactive<br>1: Active (indicating that the control word has taken effect) |  |  |
| 10       | Speed reach                             | 0: Speed not reached<br>1: Speed reached                                     |  |  |
| 11       | Internal software position limit status | 0: Software position limit not reached<br>1: Software position limit reached |  |  |
| 12       | Zero speed status                       | 0: Speed not equal to 0<br>1: Speed equal to 0                               |  |  |
| 13 to 15 | Reserved for PV mode                    | Not supported                                                                |  |  |

# Parameters related to PV mode:

Dictionary objects related to PV mode:

| Index | Sub-<br>index | Name           | Access | Data Type | Value Range | Default |
|-------|---------------|----------------|--------|-----------|-------------|---------|
| 6040h | 00            | Control word   | RW     | U16       | 0 to 65535  | 0       |
| 6041h | 00            | Status word    | RO     | U16       | -           | -       |
| 6060h | 00            | Operation mode | RW     | 18        | 0 to 10     | 0       |
| 6061h | 00            | Mode display   | RO     | 18        | -           | -       |

| Index | Sub-<br>index | Name                      | Access | Data Type | Value Range               | Default    |
|-------|---------------|---------------------------|--------|-----------|---------------------------|------------|
| 606Ch | 00            | Actual speed              | RO     | I32       | -                         | -          |
| 606Dh | 00            | Speed reach threshold     | RW     | U16       | 0 to 65535                | 10         |
| 606Eh | 00            | Speed reach time window   | RW     | U16       | 0 to 65535                | 0          |
| 606Fh | 00            | Zero speed threshold      | RW     | U16       | 0 to 65535                | 10         |
| 6070h | 00            | Zero speed time window    | RW     | U16       | 0 to 65535                | 0          |
| 607Eh | 00            | Reference polarity        | RW     | U8        | 0 to 255                  | 0          |
| 607Fh | 00            | Max. speed                | RW     | U32       | 0 to $(2^{32}-1)$         | 104857600  |
| 6083h | 00            | Profile acceleration rate | RW     | U32       | 0 to $(2^{32}-1)$         | 1747626667 |
| 6084h | 00            | Profile deceleration rate | RW     | U32       | 0 to $(2^{32}-1)$         | 1747626667 |
| 60FFh | 00            | Target velocity           | RW     | I32       | $-2^{31}$ to $(2^{31}-1)$ | 0          |

#### PV mode example:

Start and operation processes in PV mode:

| Address                                       | Name                      | Value                                                                                            |
|-----------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------|
| 6060h                                         | Control mode              | 3                                                                                                |
| 60FFh                                         | Set speed in PV mode      | The rotation speed is 600 rpm for writing data of 1310720 bits at the default gear ratio of 1:1. |
|                                               | Enable                    | Random number $\rightarrow 6 \rightarrow 7 \rightarrow 15$                                       |
| 6040h (control word)                          | Alarm clearance           | Random number $\rightarrow 128$ (rising edge active, if the alarm can be cleared)                |
|                                               | Motor moment              | The motor rotates at the set speed reference after being enabled.                                |
| 60830h Profile acceleration rate Default: 131 |                           | Default: 13107200                                                                                |
| 6084h                                         | Profile deceleration rate | Default: 1310720                                                                                 |

## 4.1.4 Profile Torque (PT) Mode

In PT mode, the host controller sends the target torque and torque reference change rate (torque slope) to the servo drive. The servo drive generates the torque reference profiles and executes torque control. When the PT mode is enabled, the object dictionary control mode (6060h) must be set to 4.

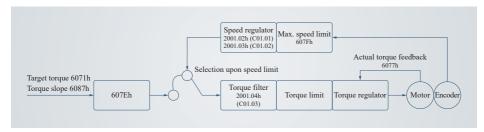



Figure 4-4 Control flow in PT mode

#### Basic configurations recommended in PT mode:

| RPDO                     | ТРДО                             | Remarks   |
|--------------------------|----------------------------------|-----------|
| 6040h Control word       | 6041h Status word                | Mandatory |
| 6071h Target Torque      | -                                | Mandatory |
| 6087h Torque slope       | -                                | Optional  |
| -                        | 6064h Position actual value      | Optional  |
| -                        | 606Ch Velocity actual value      | Optional  |
| -                        | 6077h Torque actualvalue         | Optional  |
| 6060h Modes of operation | 6061h Modes of operation display | Optional  |

### Control word settings in PT mode:

The following table lists the meanings of each bit in the control word (6040h) in PT mode.

| Bit    | Name                                                                                                        | Description                                                                                                                                                                                                                                             |
|--------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0      | Switch on                                                                                                   | This bit must be set to 1 when the servo drive is enabled.                                                                                                                                                                                              |
| 1      | Enable voltage                                                                                              | This bit must be set to 1 when the servo drive is enabled.                                                                                                                                                                                              |
| 2      | 2 Quick stop This bit must be set to 1 when the servo drive bit is set to 0, the servo drive stops quickly. |                                                                                                                                                                                                                                                         |
| 3      | Operation enable                                                                                            | This bit must be set to 1 when the servo drive is enabled.                                                                                                                                                                                              |
| 4 to 6 | 6 Reserved for PT mode Not supported                                                                        |                                                                                                                                                                                                                                                         |
| 7      | Fault reset                                                                                                 | The system performs fault reset once when this bit changes<br>from 0 to 1. If system needs fault reset for multiple times, this<br>bit must change from 0 to 1 for multiple times.<br>When this bit is set to 1, other control references are inactive. |

| Bit      | Name                  | Description                                                                                                                                     |
|----------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 8        | Halt                  | <ul><li>0: Inactive</li><li>1: Active (The system halts when this bit is set to 1 and executes references when this bit is set to 0.)</li></ul> |
| 9 to 10  | Reserved for PT mode  | Not supported                                                                                                                                   |
| 11 to 15 | Manufacturer-specific | Not supported                                                                                                                                   |

#### Status word definition in PT mode:

The following table lists the meanings of each bit in the status word (6041h) in PT mode.

| Bit | Name                                    | Description                                                                        |  |  |  |
|-----|-----------------------------------------|------------------------------------------------------------------------------------|--|--|--|
| 0   | Ready to switch on                      | 0: Inactive<br>1: Active (indicating that the servo drive can be enabled)          |  |  |  |
| 1   | Switched on                             | 0: Inactive<br>1: Active (indicating that the servo drive can be enabled)          |  |  |  |
| 2   | Operation enabled                       | 0: Inactive<br>1: Active (indicating that the servo drive has been enabled)        |  |  |  |
| 3   | Servo drive fault                       | 0: No fault<br>1: Fault occurred                                                   |  |  |  |
| 4   | Voltage enabled                         | 0: Inactive<br>1: Active (indicating that the servo drive can be enabled)          |  |  |  |
| 5   | Quick stop                              | 0: Active<br>1: Inactive                                                           |  |  |  |
| 6   | Switch on disabled                      | 0: Inactive<br>1: Active (indicating that the servo drive cannot be enabled)       |  |  |  |
| 7   | Alarm                                   | 0: No alarm<br>1: Alarm generated                                                  |  |  |  |
| 9   | Remote control                          | 0: Inactive<br>1: Active (indicating that the control word has taken effect)       |  |  |  |
| 10  | Torque reached                          | 0: Torque not reached<br>1: Torque reached                                         |  |  |  |
| 11  | Internal software position limit status | limit 0: Software position limit not reached<br>1: Software position limit reached |  |  |  |

### Parameters related to PT mode:

Dictionary objects related to PT mode:

| Index | Sub-<br>index | Name                                                           | Access | Data Type | Value Range       | Default            |
|-------|---------------|----------------------------------------------------------------|--------|-----------|-------------------|--------------------|
| 6040h | 00            | Control word                                                   | RW     | U16       | 0 to 65535        | 0                  |
| 6041h | 00            | Status word                                                    | RO     | U16       | -                 | -                  |
| 6060h | 00            | Operation mode                                                 | RW     | 18        | 0 to 10           | 0                  |
| 6061h | 00            | Mode display                                                   | RO     | 18        | -                 | -                  |
| 6071h | 00            | Target torque                                                  | RW     | I16       | -4000 to 4000     | 0                  |
| 6072h | 00            | Max. torque                                                    | RW     | U16       | 0 to 4000         | 3000               |
| 6074h | 00            | Torque reference                                               | RO     | I16       | -                 | -                  |
| 6077h | 00            | Actual torque                                                  | RO     | I16       | -                 | -                  |
| 6087h | 00            | Torque slope                                                   | RW     | U32       | 0 to $(2^{32}-1)$ | 2 <sup>32</sup> -1 |
| 607Eh | 00            | Reference polarity                                             | RW     | U8        | 0 to 255          | 0                  |
| 607Fh | 00            | Max. speed                                                     | RW     | U32       | 0 to $(2^{32}-1)$ | 104857600          |
| 60E0h | 00            | Positive torque limit                                          | RW     | U16       | 0 to 4000         | 3000               |
| 60E1h | 00            | Negative torque limit                                          | RW     | U16       | 0 to 4000         | 3000               |
| 2003h | 4a            | Reference value for torque reach                               | RW     | U16       | 0 to 4000         | 0                  |
| 2003h | 4b            | Torque output value when DO signal for torque reach turned on  | RW     | U16       | 0 to 4000         | 20                 |
| 2003h | 4c            | Torque output value when DO signal for torque reach turned off | RW     | U16       | 0 to 4000         | 10                 |

## PT mode example:

Start and operation processes in PT mode:

| Address                                                               | Name            | Value                                                                             |  |  |  |
|-----------------------------------------------------------------------|-----------------|-----------------------------------------------------------------------------------|--|--|--|
| 6060h                                                                 | Control mode    | 4                                                                                 |  |  |  |
| 6071h                                                                 | PT reference    | User-defined                                                                      |  |  |  |
|                                                                       | Enable          | Random number $\rightarrow 6 \rightarrow 7 \rightarrow 15$                        |  |  |  |
| 6040h (control<br>word)                                               | Alarm clearance | Random number $\rightarrow 128$ (rising edge active, if the alarm can be cleared) |  |  |  |
|                                                                       | Motor moment    | Reference after enabled                                                           |  |  |  |
| 6087h Torque slope User-defined (acceleration/deceleration ramp in to |                 | User-defined (acceleration/deceleration ramp in torque mode)                      |  |  |  |

## NOTICE

#### **Torque limit:**

• To protect mechanical devices, you can limit the torque references of the drive in each position, speed, and torque control mode by setting the maximum torque 6072h, positive torque limit 60E0h, and negative torque limit 60E1h. However, the torque cannot exceed the maximum torque allowed by the drive.

### 4.1.5 Homing Mode (HM)

The CiA402 protocol defines 33 homing modes according to the home switch (HSW) signal, limit switch signal, and encoder Z signal. When the mode is enabled, the object dictionary control mode (6060h) must be set to 6.

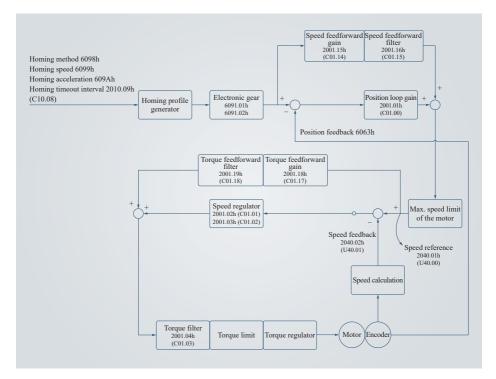



Figure 4-5 Control flow in homing mode

## Basic configurations recommended in homing mode:

| RPDO                                    | TPDO                             | Remarks   |
|-----------------------------------------|----------------------------------|-----------|
| 6040h Control word                      | 6041h Status word                | Mandatory |
| 6098h Homing method                     | -                                | Optional  |
| 6099.01h Speed during search for switch | -                                | Optional  |
| 6099.02h Speed during search for zero   | -                                | Optional  |
| 609Ah Homing acceleration               | -                                | Optional  |
| -                                       | 6064h Position actual value      | Optional  |
| 6060h Modes of operation                | 6061h Modes of operation display | Optional  |

### Control word settings in homing mode:

The following table lists the meanings of each bit in the control word (6040h) in homing mode.

| Bit      | Name                     | Description                                                                                                                                                                                                                                             |
|----------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0        | Switch on                | This bit must be set to 1 when the servo drive is enabled.                                                                                                                                                                                              |
| 1        | Enable voltage           | This bit must be set to 1 when the servo drive is enabled.                                                                                                                                                                                              |
| 2        | Quick stop               | This bit must be set to 1 when the servo drive is enabled. If this bit is set to 0, the servo drive stops quickly.                                                                                                                                      |
| 3        | Operation enable         | This bit must be set to 1 when the servo drive is enabled.                                                                                                                                                                                              |
| 4        | Homing enable            | 0: Inactive<br>1: Active (indicating that the homing process is initiated and<br>homing must be active throughout the homing process. If the<br>value is switched to inactive, the homing process is stopped.)                                          |
| 5 to 6   | Reserved for homing mode | Not supported                                                                                                                                                                                                                                           |
| 7        | Fault reset              | The system performs fault reset once when this bit changes<br>from 0 to 1. If system needs fault reset for multiple times, this<br>bit must change from 0 to 1 for multiple times.<br>When this bit is set to 1, other control references are inactive. |
| 8        | Halt                     | 0: Inactive<br>1: Active (indicating that the homing process is decelerated and<br>stopped)                                                                                                                                                             |
| 9        | Reserved for homing mode | Not supported                                                                                                                                                                                                                                           |
| 10       | Reserved for homing mode | Not supported                                                                                                                                                                                                                                           |
| 11 to 15 | Manufacturer-specific    | Not supported                                                                                                                                                                                                                                           |

### Status word definition in homing mode:

The following table lists the meanings of each bit in the status word (6041h) in homing mode.

| Bit | Name                                    | Description                                                                  |  |  |
|-----|-----------------------------------------|------------------------------------------------------------------------------|--|--|
| 0   | Ready to switch on                      | 0: Inactive<br>1: Active (indicating that the servo drive can be enabled)    |  |  |
| 1   | Switched on                             | 0: Inactive<br>1: Active (indicating that the servo drive can be enabled)    |  |  |
| 2   | Operation enabled                       | 0: Inactive<br>1: Active (indicating that the servo drive has been enabled)  |  |  |
| 3   | Servo drive fault                       | 0: No fault<br>1: Fault occurred                                             |  |  |
| 4   | Voltage enabled                         | 0: Inactive<br>1: Active (indicating that the servo drive can be enabled)    |  |  |
| 5   | Quick stop                              | 0: Active<br>1: Inactive                                                     |  |  |
| 6   | Switch on disabled                      | 0: Inactive<br>1: Active (indicating that the servo drive cannot be enabled) |  |  |
| 7   | Alarm                                   | 0: No alarm<br>1: Alarm generated                                            |  |  |
| 9   | Remote control                          | 0: Inactive<br>1: Active (indicating that the control word has taken effect) |  |  |
| 10  | Position reach                          | 1: Home located or homing interrupted                                        |  |  |
| 11  | Internal software position limit status | 0: Software position limit not reached<br>1: Software position limit reached |  |  |
| 12  | Homing completion output                | 0: Homing not completed<br>1: Homing completed                               |  |  |
| 13  | Homing error                            | 0: Homing error not occurred<br>1: Homing error occurred                     |  |  |
| 14  | Manufacturer-specific                   | Not supported                                                                |  |  |
| 15  | Homing completion                       | 0: Homing not completed<br>1: Homing completed                               |  |  |

#### Parameters related to homing mode:

Dictionary objects related to homing mode:

| Index | Sub-<br>index | Name                                   | Access | Data Type | Value Range                | Default            |
|-------|---------------|----------------------------------------|--------|-----------|----------------------------|--------------------|
| 6040h | 00            | Control word                           | RW     | U16       | 0 to 65535                 | 0                  |
| 6041h | 00            | Status word                            | RO     | U16       | -                          | -                  |
| 6060h | 00            | Operation mode                         | RW     | 18        | 0 to 10                    | 0                  |
| 6061h | 00            | Mode display                           | RO     | 18        | -                          | -                  |
| 6064h | 00            | Position feedback                      | RO     | I32       | -                          | -                  |
| 6065h | 00            | Excessive position deviation threshold | RW     | U32       | 0 to $(2^{32}-1)$          | 3145728            |
| 6066h | 00            | Following error time out               | RW     | U16       | 0 to 65535(ms)             | 0                  |
| 607Ch | 00            | Home offset                            | RW     | I32       | $-2^{31}$ to $(2^{31}-1)$  | 0                  |
| 607Fh | 00            | Max. speed                             | RW     | U32       | 0 to (2 <sup>32</sup> -1)  | 104857600          |
| 6098h | 00            | Homing method                          | RW     | 18        | 1 to 35                    | 1                  |
| (0001 | 01            | Speed during search for switch         | RW     | U32       | 0 to $(2^{32}-1)$          | 1747627            |
| 6099h | 02            | Speed during search for zero           | RW     | U32       | 10 to (2 <sup>32</sup> -1) | 174763             |
| 609Ah | 00            | Acceleration rate                      | RW     | U32       | 0 to $(2^{32}-1)$          | 1747626667         |
| 60E6h | 00            | Homing position calculation method     | RW     | U8        | 0 to 1                     | 0                  |
| 60C5h | 00            | Max. profile acceleration rate         | RW     | U32       | 0 to (2 <sup>32</sup> -1)  | 2 <sup>31</sup> -1 |
| 2010h | 09            | Homing time limit                      | RW     | U32       | 0 to $(2^{32}-1)$          | 60000              |

## Homing mode example:

Start and operation processes in homing mode:

| Address                 | Name                                          | Value                                                                                               |
|-------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------|
| 6060h                   | Control mode                                  | 6                                                                                                   |
| 6098h                   | Homing mode                                   | -2 to 35                                                                                            |
| 6040h (control<br>word) | Alarm clearance                               | Random number $\rightarrow$ 128 (rising edge active)                                                |
|                         | Homing                                        | $6 \rightarrow 7 \rightarrow 15 \rightarrow 31$ (homing enabled when bit 4 reaches the rising edge) |
| 6099-01h                | Speed during search for switch in homing mode | Default: 13981013                                                                                   |
| 6099-02h                | Speed during search for zero in homing mode   | Default: 1398101                                                                                    |
| 609Ah                   | Homing acceleration rate                      | Default: 131072                                                                                     |

## Homing mode introduction:

| Mode<br>setting | Description                                                                                                                                                                                                                                                                                                                |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -2              | The mode is used to search for the mechanical extreme position and Z pulse in the forward direction.                                                                                                                                                                                                                       |
| -1              | The mode is used to search for the mechanical extreme position and Z pulse in the reverse direction.                                                                                                                                                                                                                       |
| 0               | -                                                                                                                                                                                                                                                                                                                          |
| 1               | The motor starts operation in the reverse direction, switches to low-speed operation when the negative limit (NL) status changes from OFF to ON during reverse operation, and then retreats to search for the nearest Z pulse position as the home.                                                                        |
| 2               | The motor starts operation in the forward direction, switches to low-speed operation when the positive limit (PL) status changes from OFF to ON during forward operation, and then retreats to search for the nearest Z pulse position as the home.                                                                        |
| 3               | The motor operates in the forward direction when HSW is inactive and reverse direction when HSW is active. The motor switches to low-speed operation when the HSW status changes from ON to OFF during reverse operation, and then continues the reverse operation to search for the nearest Z pulse position as the home. |
| 4               | The motor operates in the forward direction when HSW is inactive and reverse direction when HSW is active. The motor switches to low-speed operation when the HSW status changes from OFF to ON during forward operation, and then continues the forward operation to search for the nearest Z pulse position as the home. |
| 5               | The motor operates in the reverse direction when HSW is inactive and forward direction when HSW is active. The motor switches to low-speed operation when the HSW status changes from ON to OFF during forward operation, and then continues the forward operation to search for the nearest Z pulse position as the home. |
| 6               | The motor operates in the reverse direction when HSW is inactive and forward direction when HSW is active. The motor switches to low-speed operation when the HSW status changes from OFF to ON during reverse operation, and then continues the reverse operation to search for the nearest Z pulse position as the home. |
| 7               | The motor operates in the forward direction when HSW is inactive and reverse direction when HSW is active. The motor switches to low-speed operation when the HSW status changes from ON to OFF during reverse operation, and then continues the reverse operation to search for the nearest Z pulse position as the home. |

## Table 4-1 Mode overview table

| Mode<br>setting | Description                                                                                                                                                                                                                                                                                                                |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8               | The motor operates in the forward direction when HSW is inactive and reverse direction when HSW is active. The motor switches to low-speed operation when the HSW status changes from OFF to ON during forward operation, and then continues the forward operation to search for the nearest Z pulse position as the home. |
| 9               | The motor operates in the forward direction no matter whether HSW is active or inactive. The motor switches to low-speed operation when the HSW status changes from OFF to ON during reverse operation, and then continues the reverse operation to search for the nearest Z pulse position as the home.                   |
| 10              | The motor operates in the forward direction no matter whether HSW is active or inactive. The motor switches to low-speed operation when the HSW status changes from ON to OFF during forward operation, and then continues the forward operation to search for the nearest Z pulse position as the home.                   |
| 11              | The motor operates in the reverse direction when HSW is inactive and forward direction when HSW is active. The motor switches to low-speed operation when the HSW status changes from ON to OFF during forward operation, and then continues the forward operation to search for the nearest Z pulse position as the home. |
| 12              | The motor operates in the reverse direction when HSW is inactive and forward direction when HSW is active. The motor switches to low-speed operation when the HSW status changes from OFF to ON during reverse operation, and then continues the reverse operation to search for the nearest Z pulse position as the home. |
| 13              | The motor operates in the reverse direction no matter whether HSW is active or inactive. The motor switches to low-speed operation when the HSW status changes from OFF to ON during forward operation, and then continues the forward operation to search for the nearest Z pulse position as the home.                   |
| 14              | The motor operates in the reverse direction no matter whether HSW is active or inactive. The motor switches to low-speed operation when the HSW status changes from ON to OFF during reverse operation, and then continues the reverse operation to search for the nearest Z pulse position as the home.                   |
| 15              | Reserved                                                                                                                                                                                                                                                                                                                   |
| 16              | Reserved                                                                                                                                                                                                                                                                                                                   |
| 17              | Similar to mode 1. During reverse operation, the position where the NL status changes from OFF to ON is used as the home, without searching for the Z pulse.                                                                                                                                                               |
| 18              | Similar to mode 2. During forward operation, the position where the PL status changes from OFF to ON is used as the home, without searching for the Z pulse.                                                                                                                                                               |
| 19              | Similar to mode 3. During reverse operation, the position where the HSW status changes from ON to OFF is used as the home, without searching for the Z pulse.                                                                                                                                                              |

| Mode<br>setting | Description                                                                                                                                                    |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20              | Similar to mode 4. During forward operation, the position where the HSW status changes from OFF to ON is used as the home, without searching for the Z pulse.  |
| 21              | Similar to mode 5. During forward operation, the position where the HSW status changes from ON to OFF is used as the home, without searching for the Z pulse.  |
| 22              | Similar to mode 6. During reverse operation, the position where the HSW status changes from OFF to ON is used as the home, without searching for the Z pulse.  |
| 23              | Similar to mode 7. During reverse operation, the position where the HSW status changes from ON to OFF is used as the home, without searching for the Z pulse.  |
| 24              | Similar to mode 8. During forward operation, the position where the HSW status changes from OFF to ON is used as the home, without searching for the Z pulse.  |
| 25              | Similar to mode 9. During reverse operation, the position where the HSW status changes from OFF to ON is used as the home, without searching for the Z pulse.  |
| 26              | Similar to mode 10. During forward operation, the position where the HSW status changes from ON to OFF is used as the home, without searching for the Z pulse. |
| 27              | Similar to mode 11. During forward operation, the position where the HSW status changes from ON to OFF is used as the home, without searching for the Z pulse. |
| 28              | Similar to mode 12. During reverse operation, the position where the HSW status changes from OFF to ON is used as the home, without searching for the Z pulse. |
| 29              | Similar to mode 13. During forward operation, the position where the HSW status changes from OFF to ON is used as the home, without searching for the Z pulse. |
| 30              | Similar to mode 14. During reverse operation, the position where the HSW status changes from ON to OFF is used as the home, without searching for the Z pulse. |
| 31              | Reserved                                                                                                                                                       |
| 32              | Reserved                                                                                                                                                       |
| 33              | The motor starts to operate in the reverse direction, and searches for the nearest Z pulse position as the home.                                               |
| 34              | The motor starts to operate in the forward direction, and searches for the nearest Z pulse position as the home.                                               |
| 35              | The current position is used as the home.                                                                                                                      |

### Home mode:



Figure 4-6 Definition of the home mode

#### Mode-2: The mode is used to search for the mechanical extreme position and Z pulse in the forward direction.

• The motor starts to operate in the forward direction at a high speed. After the motor runs into the mechanical extreme position, if the torque reaches the torque limit value, the speed is near zero, and the state is maintained for a certain period of time, the axis reaches the mechanical extreme position. The motor switches to operate in the reverse direction at a low speed, and searches for the nearest Z pulse position as the home.

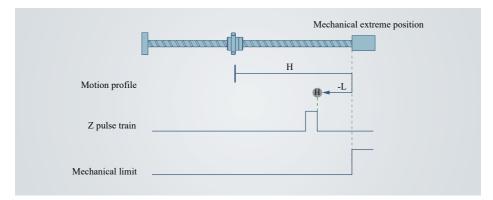



Figure 4-7 Home mode-2 profile and signal status

#### Mode-1: The mode is used to search for the mechanical extreme position and Z pulse in the reverse direction.

• The motor starts to operate in the reverse direction at a high speed. After the motor runs into the mechanical extreme position, if the torque reaches the torque limit value, the speed is near zero, and the state is maintained for a certain period of time, the axis reaches the mechanical extreme position. The motor switches to operate in the forward direction at a low speed, and searches for the nearest Z pulse position as the home.

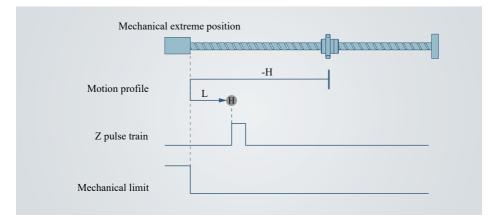



Figure 4-8 Home mode-1 profile and signal status

#### Mode 1: Search for the NL and Z pulse.

- If the NL is inactive upon startup, the motor operates in the reverse direction at a high speed. When the NL status changes from OFF to ON, the motor decelerates to stop, and then switches to operate in the forward direction at a low speed. When the NL status changes from ON to OFF during forward operation at a low speed, the motor continues the forward operation to search for the nearest Z pulse position as the home.
- If the NL is active upon startup, the motor operates in the forward direction at a low speed. When the NL
  status changes from ON to OFF during forward operation, the motor continues the forward operation to
  search for the nearest Z pulse position as the home.

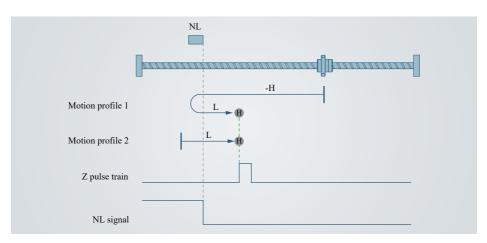



Figure 4-9 Home mode 1 profile and signal status

### Mode 2: Search for the PL and Z pulse.

- If the PL is inactive upon startup, the motor operates in the forward direction at a high speed. When the PL status changes from OFF to ON, the motor decelerates to stop, and then switches to operate in the reverse direction at a low speed. When the PL status changes from ON to OFF during reverse operation at a low speed, the motor continues the reverse operation to search for the nearest Z pulse position as the home.
- If the PL is active upon startup, the motor operates in the reverse direction at a low speed. When the PL status changes from ON to OFF during reverse operation, the motor continues the reverse operation to search for the nearest Z pulse position as the home.

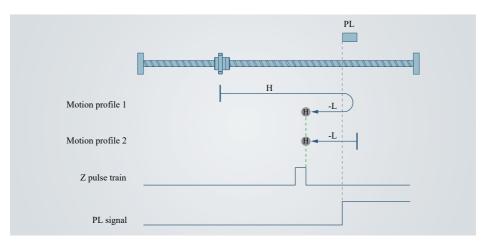



Figure 4-10 Home mode 2 profile and signal status

## Mode 3: When the HSW status changes from ON to OFF during reverse operation, the motor searches for the position and Z pulse.

- If the HSW is inactive upon startup, the motor operates in the forward direction at a high speed. When the HSW status changes from OFF to ON during forward operation, the motor decelerates to stop, and then switches to operate in the reverse direction at a low speed. When the HSW status changes from ON to OFF during reverse operation at a low speed, the motor continues the reverse operation to search for the nearest Z pulse position as the home.
- If the HSW is active upon startup, the motor operates in the reverse direction at a low speed. When the
  HSW status changes from ON to OFF during reverse operation at a low speed, the motor searches for the
  nearest Z pulse position as the home.
- In this mode, no matter whether the NL or PL is in ON state, the homing process is stopped and an alarm is reported.

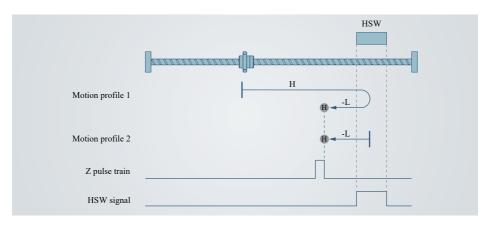



Figure 4-11 Home mode 3 profile and signal status

## Mode 4: When the HSW status changes from OFF to ON during forward operation, the motor searches for the position and Z pulse.

- If the HSW is inactive upon startup, the motor operates in the forward direction at a high speed. When the HSW status changes from OFF to ON during forward operation, the motor decelerates to stop, returns to the position where the HSW is inactive at a low speed, decelerates to stop again, and then switches to operate in the forward direction at a low speed. When the HSW status changes from OFF to ON during forward operation to search for the nearest Z pulse position as the home.
- If the HSW is active upon startup, the motor operates in the reverse direction at a low speed. When the HSW status changes from ON to OFF during reverse operation, the motor decelerates to stop, and then switches to operate in the forward direction at a low speed. When the HSW status changes from OFF to ON during forward operation at a low speed, the motor continues the forward operation to search for the nearest Z pulse position as the home.
- In this mode, no matter whether the NL or PL is in ON state, the homing process is stopped and an alarm is reported.

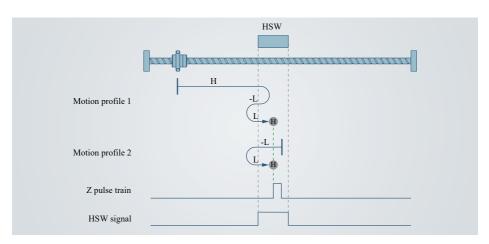



Figure 4-12 Home mode 4 profile and signal status

## Mode 5: When the HSW status changes from ON to OFF during forward operation, the motor searches for the position and Z pulse.

- If the HSW is inactive upon startup, the motor operates in the reverse direction at a high speed. When the
  HSW status changes from OFF to ON during reverse operation, the motor decelerates to stop, and then
  switches to operate in the forward direction at a low speed. When the HSW status changes from ON to
  OFF during forward operation at a low speed, the motor continues the forward operation to search for the
  nearest Z pulse position as the home.
- If the HSW is active upon startup, the motor operates in the forward direction at a low speed. When the HSW status changes from ON to OFF during forward operation at a low speed, the motor searches for the nearest Z pulse position as the home.
- In this mode, no matter whether the NL or PL is in ON state, the homing process is stopped and an alarm is reported.

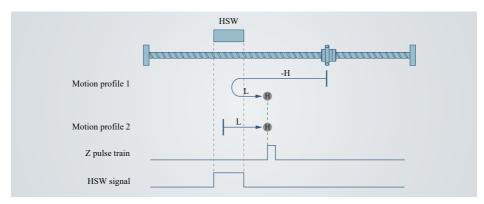



Figure 4-13 Home mode 5 profile and signal status

# Mode 6: When the HSW status changes from OFF to ON during reverse operation, the motor searches for the position and Z pulse.

- If the HSW is inactive upon startup, the motor operates in the reverse direction at a high speed. When the HSW status changes from OFF to ON during reverse operation, the motor decelerates to stop, returns to the position where the HSW is inactive at a low speed, decelerates to stop again, and then switches to operate in the reverse direction at a low speed. When the HSW status changes from OFF to ON during reverse operation at a low speed, the motor continues the reverse operation to search for the nearest Z pulse position as the home.
- If the HSW is active upon startup, the motor operates in the forward direction at a low speed. When the HSW status changes from ON to OFF during forward operation, the motor decelerates to stop, and then switches to operate in the reverse direction at a low speed. When the HSW status changes from OFF to ON during reverse operation at a low speed, the motor continues the reverse operation to search for the nearest Z pulse position as the home.
- In this mode, no matter whether the NL or PL is in ON state, the homing process is stopped and an alarm is reported.

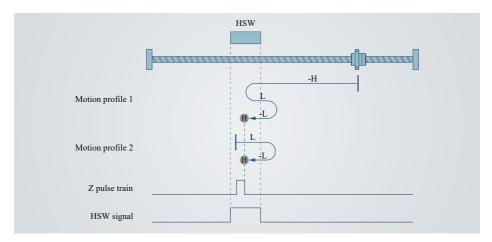



Figure 4-14 Home mode 6 profile and signal status

## Mode 7: When the HSW status changes from ON to OFF during reverse operation, the motor searches for the position and Z pulse and automatically turns to another direction upon the PL.

• If the HSW is inactive and located in the forward direction of the HSW upon startup, the motor operates in the forward direction at a high speed. When the PL is in ON state, the motor decelerates to stop, and then operates in the reverse direction at a high speed. When the HSW status changes from OFF to ON during reverse operation, the motor decelerates and continues to operate in the reverse direction at a low speed. When the HSW status changes from OFF to the position where the HSW status changes from ON to OFF, the motor decelerates to stop, returns to the position where the HSW is active at a low speed, decelerates to stop again (if the active HSW range is narrow, it may enter the inactive HSW position range on the other side), and switches to operate in

the reverse direction at a low speed. When the HSW status changes from ON to OFF during reverse operation at a low speed, the motor continues the reverse operation to search for the nearest Z pulse position as the home.

- If the HSW is inactive and located in the reverse direction of the HSW upon startup, the motor operates in the forward direction at a high speed. When the HSW status changes from OFF to ON during forward operation, the motor decelerates to stop, and then switches to operate in the reverse direction at a low speed. When the HSW status changes from ON to OFF during reverse operation at a low speed, the motor continues the reverse operation to search for the nearest Z pulse position as the home.
- If the HSW is active upon startup, the motor operates in the reverse direction at a low speed. When the HSW status changes from ON to OFF during reverse operation at a low speed, the motor searches for the nearest Z pulse position as the home.
- In this mode, the motor automatically turns to another direction when it encounters the ON state of the PL for the first time during forward operation. When the motor encounters the ON state of the NL or encounters the ON state of the PL again, the homing process is stopped and an alarm is reported.

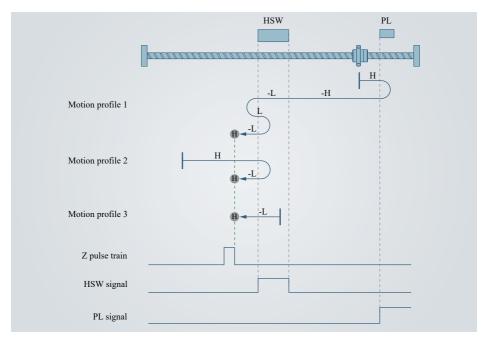



Figure 4-15 Home mode 7 profile and signal status

# Mode 8: When the HSW status changes from OFF to ON during forward operation, the motor searches for the position and Z pulse and automatically turns to another direction upon the PL.

• If the HSW is inactive and located in the forward direction of the HSW upon startup, the motor operates in the forward direction at a high speed. When the PL is in ON state, the motor decelerates to stop, and

then operates in the reverse direction at a high speed. When the HSW status changes from OFF to ON during reverse operation, the motor decelerates, and continues to operate in the reverse direction at a low speed. When the HSW status changes from ON to OFF, the motor decelerates to stop, and then switches to operate in the forward direction at a low speed. When the HSW status changes from OFF to ON during forward operation at a low speed, the motor continues the forward operation to search for the nearest Z pulse position as the home.

- If the HSW is inactive and located in the reverse direction of the HSW upon startup, the motor operates in the forward direction at a high speed. When the HSW status changes from OFF to ON during forward operation, the motor decelerates to stop, returns to the position where the HSW is inactive at a low speed, decelerates to stop again, and then switches to operate in the forward direction at a low speed. When the HSW status changes from OFF to ON during forward operation at a low speed, the motor continues the forward operation to search for the nearest Z pulse position as the home.
- If the HSW is active upon startup, the motor operates in the reverse direction at a low speed. When the HSW status changes from ON to OFF during reverse operation, the motor decelerates to stop, and then switches to operate in the forward direction at a low speed. When the HSW status changes from OFF to ON during forward operation at a low speed, the motor continues the forward operation to search for the nearest Z pulse position as the home.
- In this mode, the motor automatically turns to another direction when it encounters the ON state of the PL for the first time during forward operation. When the motor encounters the ON state of the NL or encounters the ON state of the PL again, the homing process is stopped and an alarm is reported.

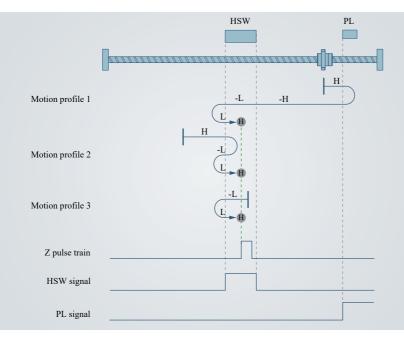



Figure 4-16 Home mode 8 profile and signal status

# Mode 9: When the HSW status changes from OFF to ON during reverse operation, the motor searches for the position and Z pulse and automatically turns to another direction upon the PL.

- If the HSW is inactive and located in the forward direction of the HSW upon startup, the motor operates in the forward direction at a high speed. When the PL is in ON state, the motor decelerates to stop, and then operates in the reverse direction at a high speed. When the HSW status changes from OFF to ON during reverse operation, the motor decelerates to stop, returns to the position where the HSW is inactive at a low speed, decelerates to stop again, and then switches to operate in the reverse direction at a low speed. When the HSW status changes from OFF to ON during reverse operation at a low speed, the motor continues the reverse operation to search for the nearest Z pulse position as the home.
- If the HSW is inactive and located in the reverse direction of the HSW upon startup, the motor operates in the forward direction at a high speed. When the HSW status changes from OFF to ON during forward operation, the motor decelerates, and continues to operate in the forward direction at a low speed. When the HSW status changes from ON to OFF, the motor decelerates to stop, and then switches to operate in the reverse direction at a low speed. When the HSW status changes from OFF to ON during reverse operation at a low speed, the motor continues the reverse operation to search for the nearest Z pulse position as the home.
- If the HSW is active upon startup, the motor operates in the forward direction at a low speed. When the HSW status changes from ON to OFF during forward operation, the motor decelerates to stop, and then switches to operate in the reverse direction at a low speed. When the HSW status changes from OFF to ON during reverse operation at a low speed, the motor continues the reverse operation to search for the nearest Z pulse position as the home.
- In this mode, the motor automatically turns to another direction when it encounters the ON state of the PL for the first time during forward operation. When the motor encounters the ON state of the NL or encounters the ON state of the PL again, the homing process is stopped and an alarm is reported.

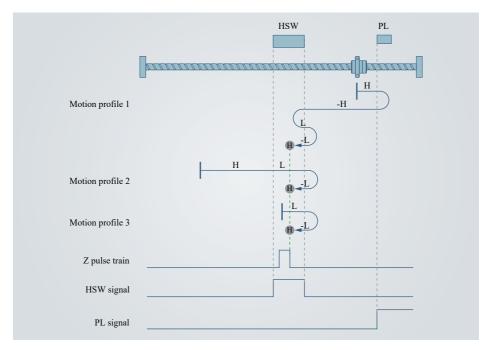



Figure 4-17 Home mode 9 profile and signal status

## Mode 10: When the HSW status changes from ON to OFF during forward operation, the motor searches for the position and Z pulse and automatically turns to another direction upon the PL.

- If the HSW is inactive and located in the forward direction of the HSW upon startup, the motor operates in the forward direction at a high speed. When the PL is in ON state, the motor decelerates to stop, and then operates in the reverse direction at a high speed. When the HSW status changes from OFF to ON during reverse operation, the motor decelerates to stop, and then switches to operate in the forward direction at a low speed. When the HSW status changes from ON to OFF during forward operation at a low speed, the motor continues the forward operation to search for the nearest Z pulse position as the home.
- If the HSW is inactive and located in the reverse direction of the HSW upon startup, the motor operates in the forward direction at a high speed. When the HSW status changes from OFF to ON during forward operation, the motor decelerates, and continues to operate in the forward direction at a low speed. When the HSW status changes from ON to OFF, the motor decelerates to stop, returns to the position where the HSW is active at a low speed, decelerates to stop again (if the active HSW range is narrow, it may enter the inactive HSW position range on the other side), and switches to operate in the forward direction at a low speed, the motor continues the forward operation to search for the nearest Z pulse position as the home.
- If the HSW is active upon startup, the motor operates in the forward direction at a low speed. When the

HSW status changes from ON to OFF during forward operation at a low speed, the motor searches for the nearest Z pulse position as the home.

 In this mode, the motor automatically turns to another direction when it encounters the ON state of the PL for the first time during forward operation. When the motor encounters the ON state of the NL or encounters the ON state of the PL again, the homing process is stopped and an alarm is reported.

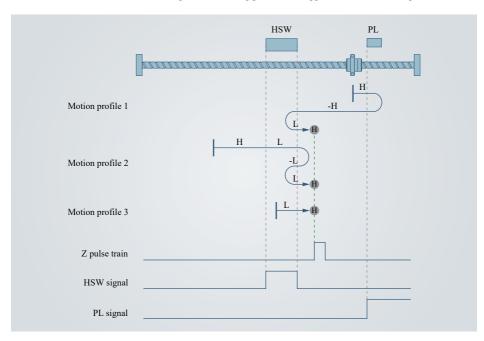



Figure 4-18 Home mode 10 profile and signal status

# Mode 11: When the HSW status changes from ON to OFF during forward operation, the motor searches for the position and Z pulse and automatically turns to the forward direction upon the NL.

- If the HSW is inactive and located in the forward direction of the HSW upon startup, the motor operates in the reverse direction at a high speed. When the HSW status changes from OFF to ON during reverse operation, the motor decelerates to stop, and then switches to operate in the forward direction at a low speed. When the HSW status changes from ON to OFF during forward operation at a low speed, the motor continues the forward operation to search for the nearest Z pulse position as the home.
- If the HSW is inactive and located in the reverse direction of the HSW upon startup, the motor operates in the reverse direction at a high speed. When the NL is in ON state, the motor decelerates to stop, and then operates in the forward direction at a high speed. When the HSW status changes from OFF to ON during forward operation, the motor decelerates and continues to operate in the forward direction at a low speed. When the HSW status changes from OFF, the motor decelerates to stop, returns to the position where the HSW is active at a low speed, decelerates to stop again (if the active HSW range

is narrow, it may enter the inactive HSW position range on the other side), and switches to operate in the forward direction at a low speed. When the HSW status changes from ON to OFF during forward operation at a low speed, the motor continues the forward operation to search for the nearest Z pulse position as the home.

- If the HSW is active upon startup, the motor operates in the forward direction at a low speed. When the
  HSW status changes from ON to OFF during forward operation at a low speed, the motor searches for
  the nearest Z pulse position as the home.
- In this mode, the motor automatically turns to another direction when it encounters the ON state of the NL for the first time during reverse operation. When the motor encounters the ON state of the PL or encounters the ON state of the NL again, the homing process is stopped and an alarm is reported.

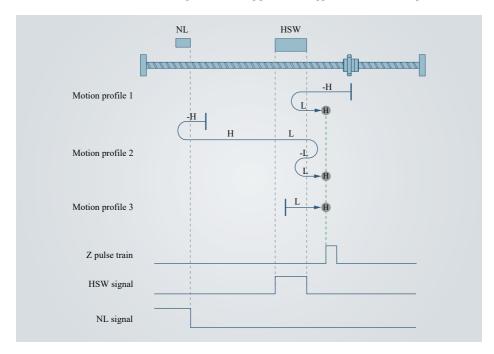



Figure 4-19 Home mode 11 profile and signal status

## Mode 12: When the HSW status changes from OFF to ON during reverse operation, the motor searches for the position and Z pulse and automatically turns to another direction upon the NL.

• If the HSW is inactive and located in the forward direction of the HSW upon startup, the motor operates in the reverse direction at a high speed. When the HSW status changes from OFF to ON during reverse operation, the motor decelerates to stop, returns to the position where the HSW is inactive at a low speed, decelerates to stop again, and then switches to operate in the reverse direction at a low speed. When the HSW status changes from OFF to ON during reverse operation at a low speed, the motor continues the reverse operation to search for the nearest Z pulse position as the home.

- If the HSW is inactive and located in the reverse direction of the HSW upon startup, the motor operates in the reverse direction at a high speed. When the NL is in ON state, the motor decelerates to stop, and then operates in the forward direction at a high speed. When the HSW status changes from OFF to ON during forward operation, the motor decelerates, and continues to operate in the forward direction at a low speed. When the HSW status changes from OFF to ON of the switches to operate in the reverse direction at a low speed. When the HSW status changes from OFF to ON during reverse operation at a low speed, the motor continues the reverse operation to search for the nearest Z pulse position as the home.
- If the HSW is active upon startup, the motor operates in the forward direction at a low speed. When the HSW status changes from ON to OFF during forward operation, the motor decelerates to stop, and then switches to operate in the reverse direction at a low speed. When the HSW status changes from OFF to ON during reverse operation at a low speed, the motor continues the reverse operation to search for the nearest Z pulse position as the home.
- In this mode, the motor automatically turns to another direction when it encounters the ON state of the NL for the first time during reverse operation. When the motor encounters the ON state of the PL or encounters the ON state of the NL again, the homing process is stopped and an alarm is reported.

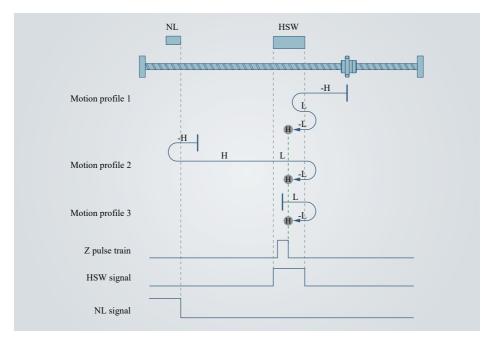



Figure 4-20 Home mode 12 profile and signal status

# Mode 13: When the HSW status changes from OFF to ON during forward operation, the motor searches for the position and Z pulse and automatically turns to another direction upon the NL.

- If the HSW is inactive and located in the forward direction of the HSW upon startup, the motor operates in the reverse direction at a high speed. When the HSW status changes from OFF to ON during reverse operation, the motor decelerates, and continues to operate in the reverse direction at a low speed. When the HSW status changes from ON to OFF, the motor decelerates to stop, and then switches to operate in the forward direction at a low speed. When the HSW status changes from OFF to ON during forward operation at a low speed, the motor continues the forward operation to search for the nearest Z pulse position as the home.
- If the HSW is inactive and located in the reverse direction of the HSW upon startup, the motor operates in the reverse direction at a high speed. When the NL is in ON state, the motor decelerates to stop, and then operates in the forward direction at a high speed. When the HSW status changes from OFF to ON during forward operation, the motor decelerates to stop, returns to the position where the HSW is inactive at a low speed, decelerates to stop again, and then switches to operate in the forward direction at a low speed. When the HSW status changes from OFF to ON during forward operation to search for the nearest Z pulse position as the home.
- If the HSW is active upon startup, the motor operates in the reverse direction at a low speed. When the HSW status changes from ON to OFF during reverse operation, the motor decelerates to stop, and then switches to operate in the forward direction at a low speed. When the HSW status changes from OFF to ON during forward operation at a low speed, the motor continues the forward operation to search for the nearest Z pulse position as the home.
- In this mode, the motor automatically turns to another direction when it encounters the ON state of the NL for the first time during reverse operation. When the motor encounters the ON state of the PL or encounters the ON state of the NL again, the homing process is stopped and an alarm is reported.

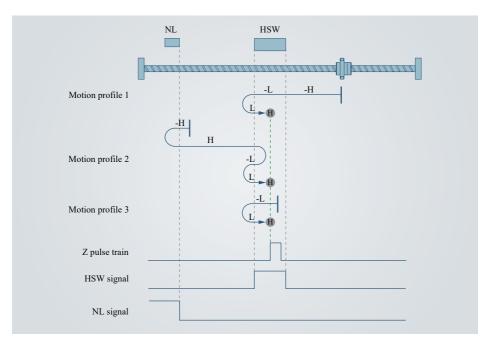



Figure 4-21 Home mode 13 profile and signal status

# Mode 14: When the HSW status changes from ON to OFF during reverse operation, the motor searches for the position and Z pulse and automatically turns to another direction upon the NL.

- If the HSW is inactive and located in the forward direction of the HSW upon startup, the motor operates in the reverse direction at a high speed. When the HSW status changes from OFF to ON during reverse operation, the motor decelerates and continues to operate in the reverse direction at a low speed. When the HSW status changes from ON to OFF, the motor decelerates to stop, returns to the position where the HSW is active at a low speed, decelerates to stop again (if the active HSW range is narrow, it may enter the inactive HSW position range on the other side), and switches to operate in the reverse direction at a low speed, the motor continues the reverse operation to search for the nearest Z pulse position as the home.
- If the HSW is inactive and located in the reverse direction of the HSW upon startup, the motor operates in the reverse direction at a high speed. When the NL is in ON state, the motor decelerates to stop, and then operates in the forward direction at a high speed. When the HSW status changes from OFF to ON during forward operation, the motor decelerates to stop, and then switches to operate in the reverse direction at a low speed. When the HSW status changes from ON to OFF during reverse operation at a low speed, the motor continues the reverse operation to search for the nearest Z pulse position as the home.
- If the HSW is active upon startup, the motor operates in the reverse direction at a low speed. When the
  HSW status changes from ON to OFF during reverse operation at a low speed, the motor searches for the

nearest Z pulse position as the home.

 In this mode, the motor automatically turns to another direction when it encounters the ON state of the NL for the first time during reverse operation. When the motor encounters the ON state of the PL or encounters the ON state of the NL again, the homing process is stopped and an alarm is reported.

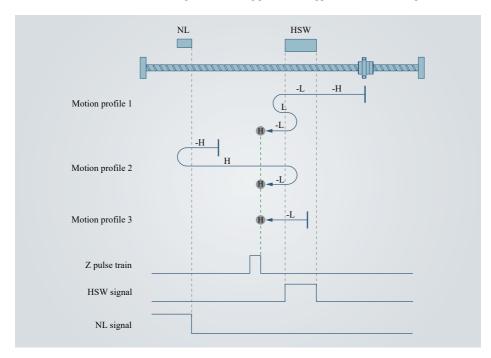



Figure 4-22 Home mode 14 profile and signal status

### Mode 15 and mode 16: Reserved

#### Mode 17: Search for the NL.

- If the NL is inactive upon startup, the motor operates in the reverse direction at a high speed. When the
  NL status changes from OFF to ON, the motor decelerates to stop, and then switches to operate in the
  forward direction at a low speed. When the NL status changes from ON to OFF during forward operation
  at a low speed, the motor decelerates to stop and uses the stop position as the home.
- If the NL is active upon startup, the motor operates in the forward direction at a low speed. When the NL
  status changes from ON to OFF during forward operation, the motor decelerates to stop and uses the stop
  position as the home.

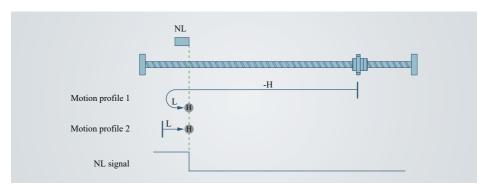



Figure 4-23 Home mode 17 profile and signal status

### Mode 18: Search for the PL.

- If the PL is inactive upon startup, the motor operates in the forward direction at a high speed. When the PL status changes from OFF to ON, the motor decelerates to stop, and then switches to operate in the reverse direction at a low speed. When the PL status changes from ON to OFF during reverse operation at a low speed, the motor decelerates to stop and uses the stop position as the home.
- If the PL is active upon startup, the motor operates in the reverse direction at a low speed. When the PL status changes from ON to OFF during reverse operation at a low speed, the motor decelerates to stop and uses the stop position as the home.

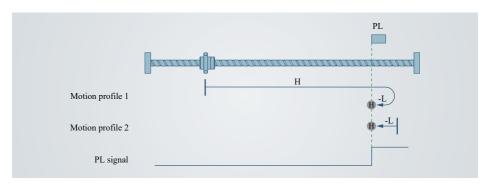



Figure 4-24 Home mode 18 profile and signal status

# Mode 19: When the HSW status changes from ON to OFF during reverse operation, the motor searches for the position.

• If the HSW is inactive upon startup, the motor operates in the forward direction at a high speed. When the HSW status changes from OFF to ON during forward operation, the motor decelerates to stop, and then switches to operate in the reverse direction at a low speed. When the HSW status changes from ON to OFF during reverse operation at a low speed, the motor decelerates to stop and uses the stop position as the home.

- If the HSW is active upon startup, the motor operates in the reverse direction at a low speed. When the
  HSW status changes from ON to OFF during reverse operation, the motor uses the stop position as the
  home.
- In this mode, no matter whether the NL or PL is in ON state, the homing process is stopped and an alarm is reported.

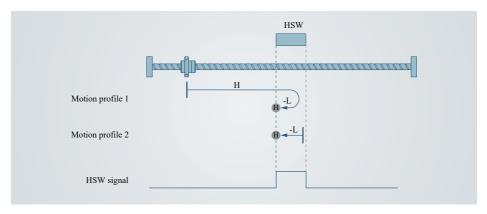



Figure 4-25 Home mode 19 profile and signal status

## Mode 20: When the HSW status changes from OFF to ON during forward operation, the motor searches for the position.

- If the HSW is inactive upon startup, the motor operates in the forward direction at a high speed. When the HSW status changes from OFF to ON during forward operation, the motor decelerates to stop, returns to the position where the HSW is inactive at a low speed, decelerates to stop again, and then switches to operate in the forward direction at a low speed. When the HSW status changes from OFF to ON during forward operation at a low speed, the motor decelerates to stop again as the home.
- If the HSW is active upon startup, the motor operates in the reverse direction at a low speed. When the HSW status changes from ON to OFF during reverse operation, the motor decelerates to stop, and then switches to operate in the forward direction at a low speed. When the HSW status changes from OFF to ON during forward operation at a low speed, the motor decelerates to stop and uses the stop position as the home.
- In this mode, no matter whether the NL or PL is in ON state, the homing process is stopped and an alarm is reported.

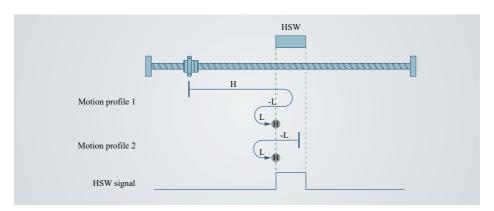



Figure 4-26 Home mode 20 profile and signal status

# Mode 21: When the HSW status changes from ON to OFF during forward operation, the motor searches for the position.

- If the HSW is inactive upon startup, the motor operates in the reverse direction at a high speed. When the HSW status changes from OFF to ON during reverse operation, the motor decelerates to stop, and then switches to operate in the forward direction at a low speed. When the HSW status changes from ON to OFF during forward operation at a low speed, the motor decelerates to stop and uses the stop position as the home.
- If the HSW is active upon startup, the motor operates in the forward direction at a low speed. When the HSW status changes from ON to OFF during forward operation, the motor uses the stop position as the home.
- In this mode, no matter whether the NL or PL is in ON state, the homing process is stopped and an alarm is reported.

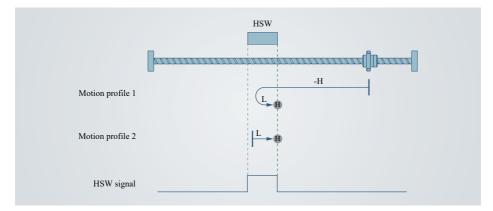



Figure 4-27 Home mode 21 profile and signal status

#### Mode 22: Search for the PL.

- If the HSW is inactive upon startup, the motor operates in the reverse direction at a high speed. When the HSW status changes from OFF to ON during reverse operation, the motor decelerates to stop, returns to the position where the HSW is inactive at a low speed, decelerates to stop again, and then switches to operate in the reverse direction at a low speed. When the HSW status changes from OFF to ON during reverse operation at a low speed, the motor decelerates to stop and uses the stop position as the home.
- If the HSW is active upon startup, the motor operates in the forward direction at a low speed. When the HSW status changes from ON to OFF during forward operation, the motor decelerates to stop, and then switches to operate in the reverse direction at a low speed. When the HSW status changes from OFF to ON during reverse operation at a low speed, the motor decelerates to stop and uses the stop position as the home.
- In this mode, no matter whether the NL or PL is in ON state, the homing process is stopped and an alarm is reported.

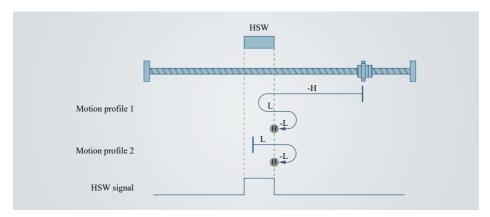



Figure 4-28 Home mode 22 profile and signal status

## Mode 23: When the HSW status changes from ON to OFF during reverse operation, the motor searches for the position and automatically turns to another direction upon the PL.

- If the HSW is inactive and located in the forward direction of the HSW upon startup, the motor operates in the forward direction at a high speed. When the PL is in ON state, the motor decelerates to stop, and then operates in the reverse direction at a high speed. When the HSW status changes from OFF to ON during reverse operation, the motor decelerates and continues to operate in the reverse direction at a low speed. When the HSW status changes from OFF, the motor decelerates to stop, returns to the position where the HSW is active at a low speed, decelerates to stop again (if the active HSW range is narrow, it may enter the inactive HSW position range on the other side), and switches to operate in the reverse direction at a low speed. When the HSW status changes from ON to OFF during reverse operation at a low speed, the motor decelerates to stop and uses the stop position as the home.
- If the HSW is inactive and located in the reverse direction of the HSW upon startup, the motor operates in the forward direction at a high speed. When the HSW status changes from OFF to ON during forward

operation, the motor decelerates to stop, and then switches to operate in the reverse direction at a low speed. When the HSW status changes from ON to OFF during reverse operation at a low speed, the motor decelerates to stop and uses the stop position as the home.

- If the HSW is active upon startup, the motor operates in the reverse direction at a low speed. When the
  HSW status changes from ON to OFF during reverse operation, the motor uses the stop position as the
  home.
- In this mode, the motor automatically turns to another direction when it encounters the ON state of the PL for the first time during forward operation. When the motor encounters the ON state of the NL or encounters the ON state of the PL again, the homing process is stopped and an alarm is reported.

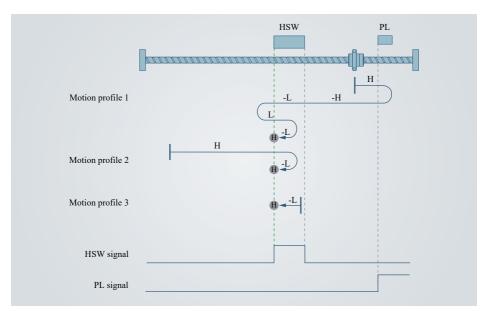



Figure 4-29 Home mode 23 profile and signal status

## Mode 24: When the HSW status changes from OFF to ON during forward operation, the motor searches for the position and automatically turns to another direction upon the PL.

- If the HSW is inactive and located in the forward direction of the HSW upon startup, the motor operates in the forward direction at a high speed. When the PL is in ON state, the motor decelerates to stop, and then operates in the reverse direction at a high speed. When the HSW status changes from OFF to ON during reverse operation, the motor decelerates, and continues to operate in the reverse direction at a low speed. When the HSW status changes from OFF, the motor decelerates to stop, and then switches to operate in the forward direction at a low speed. When the HSW status changes from OFF to ON during forward operation at a low speed, the motor decelerates to stop and uses the stop position as the home.
- If the HSW is inactive and located in the reverse direction of the HSW upon startup, the motor operates in the forward direction at a high speed. When the HSW status changes from OFF to ON during forward

operation, the motor decelerates to stop, returns to the position where the HSW is inactive at a low speed, decelerates to stop again, and then switches to operate in the forward direction at a low speed. When the HSW status changes from OFF to ON during forward operation at a low speed, the motor decelerates to stop and uses the stop position as the home.

- If the HSW is active upon startup, the motor operates in the reverse direction at a low speed. When the HSW status changes from ON to OFF during reverse operation, the motor decelerates to stop, and then switches to operate in the forward direction at a low speed. When the HSW status changes from OFF to ON during forward operation at a low speed, the motor decelerates to stop and uses the stop position as the home.
- In this mode, the motor automatically turns to another direction when it encounters the ON state of the PL for the first time during forward operation. When the motor encounters the ON state of the NL or encounters the ON state of the PL again, the homing process is stopped and an alarm is reported.

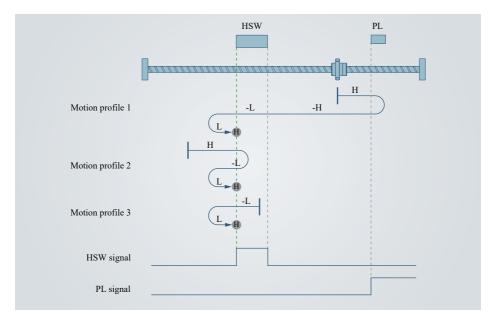



Figure 4-30 Home mode 24 profile and signal status

## Mode 25: When the HSW status changes from OFF to ON during reverse operation, the motor searches for the position and automatically turns to another direction upon the PL.

If the HSW is inactive and located in the forward direction of the HSW upon startup, the motor operates in the forward direction at a high speed. When the PL is in ON state, the motor decelerates to stop, and then operates in the reverse direction at a high speed. When the HSW status changes from OFF to ON during reverse operation, the motor decelerates to stop, returns to the position where the HSW is inactive at a low speed, decelerates to stop again, and then switches to operate in the reverse direction at a low speed. When the HSW status changes from OFF to ON during reverse operation at a low speed. When the HSW status changes from OFF to ON during reverse direction at a low speed. When the HSW status changes from OFF to ON during reverse operation at a low speed. When the HSW status changes from OFF to ON during reverse operation at a low speed. When the HSW status changes from OFF to ON during reverse operation at a low speed. When the HSW status changes from OFF to ON during reverse operation at a low speed. When the HSW status changes from OFF to ON during reverse operation at a low speed. When the HSW status changes from OFF to ON during reverse operation at a low speed.

motor decelerates to stop and uses the stop position as the home.

- If the HSW is inactive and located in the reverse direction of the HSW upon startup, the motor operates in the forward direction at a high speed. When the HSW status changes from OFF to ON during forward operation, the motor decelerates, and continues to operate in the forward direction at a low speed. When the HSW status changes from ON to OFF, the motor decelerates to stop, and then switches to operate in the reverse direction at a low speed. When the HSW status changes from OFF to ON during reverse operation at a low speed, the motor decelerates to stop and uses the stop position as the home.
- If the HSW is active upon startup, the motor operates in the forward direction at a low speed. When the HSW status changes from ON to OFF during forward operation, the motor decelerates to stop, and then switches to operate in the reverse direction at a low speed. When the HSW status changes from OFF to ON during reverse operation at a low speed, the motor decelerates to stop and uses the stop position as the home.
- In this mode, the motor automatically turns to another direction when it encounters the ON state of the PL for the first time during forward operation. When the motor encounters the ON state of the NL or encounters the ON state of the PL again, the homing process is stopped and an alarm is reported.

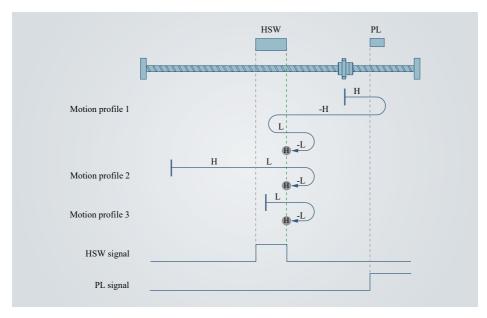



Figure 4-31 Home mode 25 profile and signal status

# Mode 26: When the HSW status changes from ON to OFF during forward operation, the motor searches for the position and automatically turns to another direction upon the PL.

• If the HSW is inactive and located in the forward direction of the HSW upon startup, the motor operates in the forward direction at a high speed. When the PL is in ON state, the motor decelerates to stop, and

then operates in the reverse direction at a high speed. When the HSW status changes from OFF to ON during reverse operation, the motor decelerates to stop, and then switches to operate in the forward direction at a low speed. When the HSW status changes from ON to OFF during forward operation at a low speed, the motor decelerates to stop and uses the stop position as the home.

- If the HSW is inactive and located in the reverse direction of the HSW upon startup, the motor operates in the forward direction at a high speed. When the HSW status changes from OFF to ON during forward operation, the motor decelerates and continues to operate in the forward direction at a low speed. When the HSW status changes from ON to OFF, the motor decelerates to stop, returns to the position where the HSW is active at a low speed, decelerates to stop again (if the active HSW range is narrow, it may enter the inactive HSW position range on the other side), and switches to operate in the forward direction at a low speed, the motor decelerates to stop position as the home.
- If the HSW is active upon startup, the motor operates in the forward direction at a low speed. When the
  HSW status changes from ON to OFF during forward operation, the motor uses the stop position as the
  home.
- In this mode, the motor automatically turns to another direction when it encounters the ON state of the PL for the first time during forward operation. When the motor encounters the ON state of the NL or encounters the ON state of the PL again, the homing process is stopped and an alarm is reported.

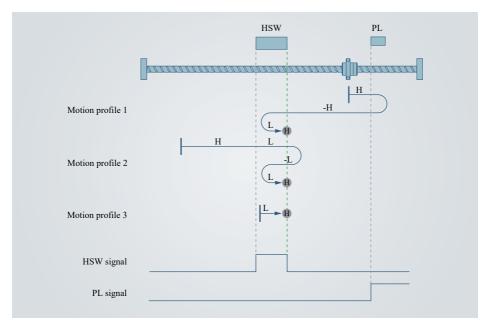



Figure 4-32 Home mode 26 profile and signal status

# Mode 27: When the HSW status changes from ON to OFF during forward operation, the motor searches for the position and automatically turns to another direction upon the NL.

- If the HSW is inactive and located in the forward direction of the HSW upon startup, the motor operates in the reverse direction at a high speed. When the HSW status changes from OFF to ON during reverse operation, the motor decelerates to stop, and then switches to operate in the forward direction at a low speed. When the HSW status changes from ON to OFF during forward operation at a low speed, the motor decelerates to stop and uses the stop position as the home.
- If the HSW is inactive and located in the reverse direction of the HSW upon startup, the motor operates in the reverse direction at a high speed. When the NL is in ON state, the motor decelerates to stop, and then operates in the forward direction at a high speed. When the HSW status changes from OFF to ON during forward operation, the motor decelerates and continues to operate in the forward direction at a low speed. When the HSW status changes from OFF, the motor decelerates to stop, returns to the position where the HSW is active at a low speed, decelerates to stop again (if the active HSW range is narrow, it may enter the inactive HSW position range on the other side), and switches to operate in the forward direction at a low speed. When the HSW status changes from ON to OFF during forward operation at a low speed, the motor decelerates to stop and uses the stop position as the home.
- If the HSW is active upon startup, the motor operates in the forward direction at a low speed. When the HSW status changes from ON to OFF during forward operation, the motor uses the stop position as the home.
- In this mode, the motor automatically turns to another direction when it encounters the ON state of the NL for the first time during reverse operation. When the motor encounters the ON state of the PL or encounters the ON state of the NL again, the homing process is stopped and an alarm is reported.

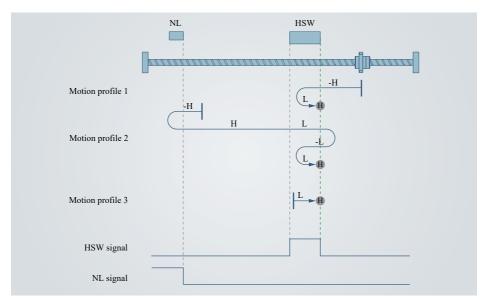



Figure 4-33 Home mode 27 profile and signal status

# Mode 28: When the HSW status changes from OFF to ON during reverse operation, the motor searches for the position and automatically turns to another direction upon the NL.

- If the HSW is inactive and located in the forward direction of the HSW upon startup, the motor operates in the reverse direction at a high speed. When the HSW status changes from OFF to ON during reverse operation, the motor decelerates to stop, returns to the position where the HSW is inactive at a low speed, decelerates to stop again, and then switches to operate in the reverse direction at a low speed. When the HSW status changes from OFF to ON during reverse operation at a low speed, the motor decelerates to stop and uses the stop position as the home.
- If the HSW is inactive and located in the reverse direction of the HSW upon startup, the motor operates in the reverse direction at a high speed. When the NL is in ON state, the motor decelerates to stop, and then operates in the forward direction at a high speed. When the HSW status changes from OFF to ON during forward operation, the motor decelerates, and continues to operate in the forward direction at a low speed. When the HSW status changes from OFF to ON to OFF, the motor decelerates to stop, and then switches to operate in the reverse direction at a low speed. When the HSW status changes from OFF to ON during reverse operation at a low speed, the motor decelerates to stop and uses the stop position as the home.
- If the HSW is active upon startup, the motor operates in the forward direction at a low speed. When the
  HSW status changes from ON to OFF during forward operation, the motor decelerates to stop, and then
  switches to operate in the reverse direction at a low speed. When the HSW status changes from OFF to
  ON during reverse operation at a low speed, the motor decelerates to stop and uses the stop position as
  the home.
- In this mode, the motor automatically turns to another direction when it encounters the ON state of the NL for the first time during reverse operation. When the motor encounters the ON state of the PL or encounters the ON state of the NL again, the homing process is stopped and an alarm is reported.

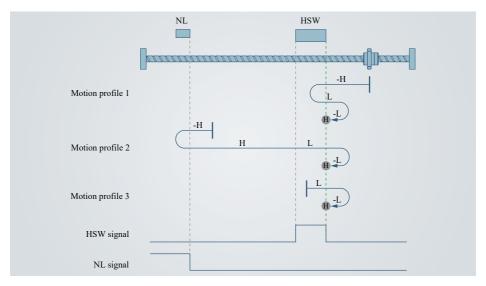



Figure 4-34 Home mode 28 profile and signal status

# Mode 29: When the HSW status changes from OFF to ON during forward operation, the motor searches for the position and automatically turns to another direction upon the NL.

- If the HSW is inactive and located in the forward direction of the HSW upon startup, the motor operates in the reverse direction at a high speed. When the HSW status changes from OFF to ON during reverse operation, the motor decelerates, and continues to operate in the reverse direction at a low speed. When the HSW status changes from ON to OFF, the motor decelerates to stop, and then switches to operate in the forward direction at a low speed. When the HSW status changes from OFF to ON during forward operation at a low speed, the motor decelerates to stop and uses the stop position as the home.
- If the HSW is inactive and located in the reverse direction of the HSW upon startup, the motor operates in the reverse direction at a high speed. When the NL is in ON state, the motor decelerates to stop, and then operates in the forward direction at a high speed. When the HSW status changes from OFF to ON during forward operation, the motor decelerates to stop, returns to the position where the HSW is inactive at a low speed, decelerates to stop again, and then switches to operate in the forward direction at a low speed. When the HSW status changes from OFF to ON during forward operation at a low speed, the motor decelerates to stop again, as the home.
- If the HSW is active upon startup, the motor operates in the reverse direction at a low speed. When the HSW status changes from ON to OFF during reverse operation, the motor decelerates to stop, and then switches to operate in the forward direction at a low speed. When the HSW status changes from OFF to ON during forward operation at a low speed, the motor decelerates to stop and uses the stop position as the home.
- In this mode, the motor automatically turns to another direction when it encounters the ON state of the NL for the first time during reverse operation. When the motor encounters the ON state of the PL or encounters the ON state of the NL again, the homing process is stopped and an alarm is reported.

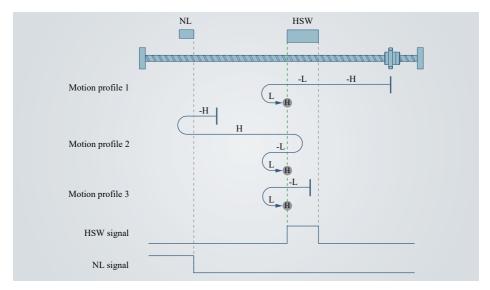



Figure 4-35 Home mode 29 profile and signal status

# Mode 30: When the HSW status changes from ON to OFF during reverse operation, the motor searches for the position and automatically turns to another direction upon the NL.

- If the HSW is inactive and located in the forward direction of the HSW upon startup, the motor operates in the reverse direction at a high speed. When the HSW status changes from OFF to ON during reverse operation, the motor decelerates and continues to operate in the reverse direction at a low speed. When the HSW status changes from ON to OFF, the motor decelerates to stop, returns to the position where the HSW is active at a low speed, decelerates to stop again (if the active HSW range is narrow, it may enter the inactive HSW position range on the other side), and switches to operate in the reverse direction at a low speed, the motor decelerates to stop again (or the active HSW range) and speed, the motor decelerates to stop and uses the stop position as the home.
- If the HSW is inactive and located in the reverse direction of the HSW upon startup, the motor operates in the reverse direction at a high speed. When the NL is in ON state, the motor decelerates to stop, and then operates in the forward direction at a high speed. When the HSW status changes from OFF to ON during forward operation, the motor decelerates to stop, and then switches to operate in the reverse direction at a low speed. When the HSW status changes from ON to OFF during reverse operation at a low speed, the motor decelerates to stop and uses the stop position as the home.
- If the HSW is active upon startup, the motor operates in the reverse direction at a low speed. When the HSW status changes from ON to OFF during reverse operation, the motor uses the stop position as the home.
- In this mode, the motor automatically turns to another direction when it encounters the ON state of the NL for the first time during reverse operation. When the motor encounters the ON state of the PL or encounters the ON state of the NL again, the homing process is stopped and an alarm is reported.

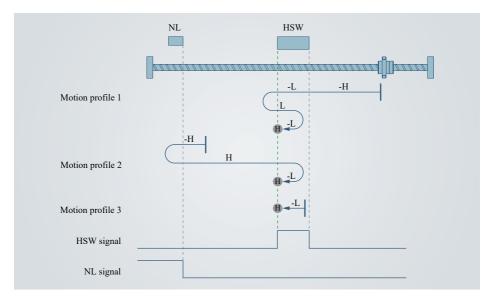



Figure 4-36 Home mode 30 profile and signal status

#### Mode 31 and mode 32: Reserved

#### Mode 33: The motor searches for the nearest Z pulse during reverse operation.

- The motor starts to operate in the reverse direction at a low speed, and searches for the nearest Z pulse position as the home. If the motor encounters the ON state of NL before the Z pulse during reverse operation, the motor decelerates to stop, and then operates in the forward direction to search for the nearest Z pulse position as the home.
- In this mode, the motor automatically turns to another direction when it encounters the ON state of the NL for the first time during reverse operation. When the motor encounters the ON state of the PL or encounters the ON state of the NL again, the homing process is stopped and an alarm is reported.

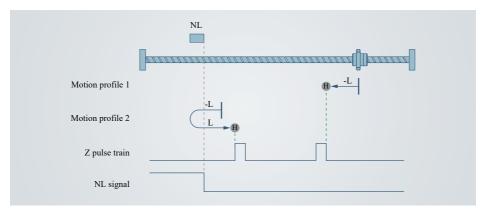



Figure 4-37 Home mode 33 profile and signal status

#### Mode 34: The motor searches for the nearest Z pulse during forward operation.

- The motor starts to operate in the forward direction at a low speed, and searches for the nearest Z pulse position as the home. If the motor encounters the ON state of PL before the Z pulse during forward operation, the motor decelerates to stop, and then operates in the reverse direction to search for the nearest Z pulse position as the home.
- In this mode, the motor automatically turns to another direction when it encounters the ON state of the PL for the first time during forward operation. When the motor encounters the ON state of the NL or encounters the ON state of the PL again, the homing process is stopped and an alarm is reported.

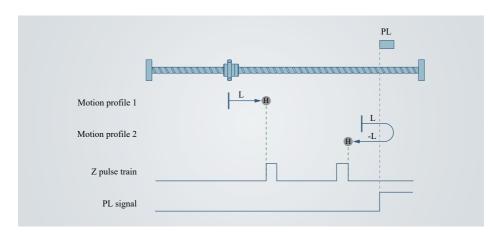



Figure 4-38 Home mode 34 profile and signal status

#### Mode 35: The current position is used as the home.

Homing mode 35: The present position is taken as the mechanical home. After homing is triggered (control word 6040h: 0x0F → 0x1F):

60E6 = 0 (absolute homing):

6064 (position feedback) is set to 607C (home offset) after homing is done.

60E6 = 1 (relative homing):

6064 (position feedback) is the sum of the original value plus 607C (home offset) after homing is done.

# 4.1.6 Cyclic Synchronous Position (CSP) Mode

In CSP mode, the host controller generates the start speed, stop speed, acceleration rate, and deceleration rate for reaching the target position, and sends the absolute target position to the servo drive cyclically. The servo drive operates by following the target position. When the CSP mode is enabled, the object dictionary control mode (6060h) must be set to 8.

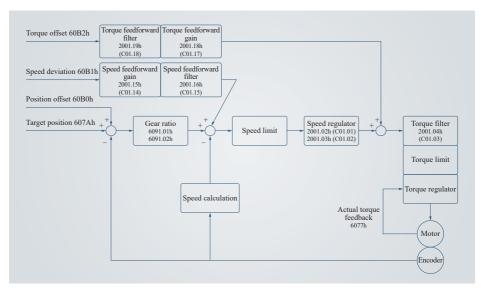



Figure 4-39 Control in CSP mode

#### Basic configurations recommended in CSP mode:

| RPDO                     | TPDO                             | Remarks   |
|--------------------------|----------------------------------|-----------|
| 6040h Control word       | 6041h Status word                | Mandatory |
| 607Ah Target position    | 6064h Position actual value      | Mandatory |
| 6060h Modes of operation | 6061h Modes of operation display | Optional  |

#### Control word settings in CSP mode:

The following table lists the meanings of each bit in the control word (6040h) in CSP mode.

| Bit | Name           | Name Description                                           |  |  |
|-----|----------------|------------------------------------------------------------|--|--|
| 0   | Switch on      | This bit must be set to 1 when the servo drive is enabled. |  |  |
| 1   | Enable voltage | This bit must be set to 1 when the servo drive is enabled. |  |  |

| Bit      | Name                  | Description                                                                                                                                                                                                                                             |
|----------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2        | Quick stop            | This bit must be set to 1 when the servo drive is enabled. If this bit is set to 0, the servo drive stops quickly.                                                                                                                                      |
| 3        | Operation enable      | This bit must be set to 1 when the servo drive is enabled.                                                                                                                                                                                              |
| 4 to 6   | Reserved for CSP mode | Not supported                                                                                                                                                                                                                                           |
| 7        | Fault reset           | The system performs fault reset once when this bit changes<br>from 0 to 1. If system needs fault reset for multiple times, this<br>bit must change from 0 to 1 for multiple times.<br>When this bit is set to 1, other control references are inactive. |
| 8 to 10  | Reserved for CSP mode | Not supported                                                                                                                                                                                                                                           |
| 11 to 15 | Manufacturer-specific | Not supported                                                                                                                                                                                                                                           |

# Status word definition in CSP mode:

The following table lists the meanings of each bit in the status word (6041h) in CSP mode.

| Bit | Name               | Description                                                                  |
|-----|--------------------|------------------------------------------------------------------------------|
| 0   | Ready to switch on | 0: Inactive<br>1: Active (indicating that the servo drive can be enabled)    |
| 1   | Switched on        | 0: Inactive<br>1: Active (indicating that the servo drive can be enabled)    |
| 2   | Operation enabled  | 0: Inactive<br>1: Active (indicating that the servo drive has been enabled)  |
| 3   | Servo drive fault  | 0: No fault<br>1: Fault occurred                                             |
| 4   | Voltage enabled    | 0: Inactive<br>1: Active (indicating that the servo drive can be enabled)    |
| 5   | Quick stop         | 0: Active<br>1: Inactive                                                     |
| 6   | Switch on disabled | 0: Inactive<br>1: Active (indicating that the servo drive cannot be enabled) |
| 7   | Alarm              | 0: No alarm<br>1: Alarm generated                                            |
| 9   | Remote control     | 0: Inactive<br>1: Active (indicating that the control word has taken effect) |
| 10  | Position reach     | Not supported. This bit remains 1 all the time.                              |

| Bit      | Name                                    | Description                                                                  |  |
|----------|-----------------------------------------|------------------------------------------------------------------------------|--|
| 11       | Internal software position limit status | 0: Software position limit not reached<br>1: Software position limit reached |  |
| 12       | Target position following               | This bit remains 1 all the time.                                             |  |
| 13       | Followed position error alarm           | 0: No alarm generated<br>1: Alarm generated                                  |  |
| 14 to 15 | Manufacturer-specific                   | Not supported                                                                |  |

## Parameters related to CSP mode:

Dictionary objects related to CSP mode:

| Index | Sub-<br>index | Name                                   | Access | Data Type | Value Range               | Default |
|-------|---------------|----------------------------------------|--------|-----------|---------------------------|---------|
| 6040h | 00            | Control word                           | RW     | U16       | 0 to 65535                | 0       |
| 6041h | 00            | Status word                            | RO     | U16       | -                         | -       |
| 6060h | 00            | Operation mode                         | RW     | 18        | 0 to 10                   | 0       |
| 6061h | 00            | Mode display                           | RO     | 18        | -                         | -       |
| 6064h | 00            | Position feedback                      | RO     | I32       | -                         | -       |
| 6065h | 00            | Excessive position deviation threshold | RW     | I32       | 0 to (2 <sup>32</sup> -1) | 3145728 |
| 6066h | 00            | Following error time out               | RW     | U16       | 0 to 65535                | 0       |
| 606Ch | 00            | Actual speed                           | RO     | I32       | -                         | -       |
| 6077h | 00            | Actual torque                          | RO     | I16       | -                         | -       |
| 607Ah | 00            | Target position                        | RW     | I32       | $-2^{31}$ to $(2^{31}-1)$ | 0       |
| 607Eh | 00            | Reference polarity                     | RW     | U8        | 0 to 255                  | 0       |
| 60B0h | 00            | Position offset                        | RW     | I32       | $-2^{31}$ to $(2^{31}-1)$ | 0       |
| 60B1h | 00            | Speed deviation                        | RW     | I32       | $-2^{31}$ to $(2^{31}-1)$ | 0       |
| 60B2h | 00            | Torque offset                          | RW     | I16       | -4000 to 4000             | 0       |
| 60F4h | 00            | Position deviation                     | RO     | I32       | -                         | -       |

#### CSP mode example:

Start and operation processes in CSP mode:

| Address                 | Name                           | Value                                                                             |  |  |
|-------------------------|--------------------------------|-----------------------------------------------------------------------------------|--|--|
| 6060h                   | Control mode                   | 8                                                                                 |  |  |
|                         | Enable                         | Random number $\rightarrow 6 \rightarrow 7 \rightarrow 15$ or MC_Power            |  |  |
| 6040h (control<br>word) | Alarm clearance                | Random number $\rightarrow$ 128 (rising edge active, if the alarm can be cleared) |  |  |
|                         | Axis fault reset               | Host controller reference or PLC reference MC_Reset                               |  |  |
|                         | Position reference             | Host controller reference (including the acceleration rate and deceleration rate) |  |  |
|                         | Analog speed control           | Host controller reference, PLC reference MC_MoveVelocity                          |  |  |
| 607Ah                   | Relative position reference    | Host controller reference, PLC reference MC_MoveRelative                          |  |  |
|                         | Incremental position reference | Host controller reference, PLC reference MC_MoveAdditive                          |  |  |
|                         | Absolute position reference    | Host controller reference, PLC reference MC_MoveAbsolute                          |  |  |
|                         | Axis deceleration to stop      | Host controller reference, PLC reference MC_Stop                                  |  |  |
|                         | Synchronization cycle time     | Host controller reference (DC-SYn-chro)                                           |  |  |

# 4.1.7 Cyclic Synchronous Velocity (CSV) Mode

In CSV mode, the host controller generates the acceleration rate and deceleration rate for reaching the target torque, and sends the target torque to the servo drive cyclically. The servo drive operates by following the target torque. When the CSV mode is enabled, the object dictionary control mode (6060h) must be set to 9.

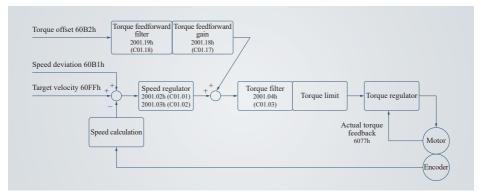



Figure 4-40 Control in CSV mode

## Basic configurations recommended in CSV mode:

| RPDO                     | TPDO                             | Remarks   |
|--------------------------|----------------------------------|-----------|
| 6040h Control word       | 6041h Status word                | Mandatory |
| 60FFh Target Velocity    | -                                | Mandatory |
| -                        | 6064h Position actual value      | Optional  |
| -                        | 606Ch Velocity actual value      | Optional  |
| 6060h Modes of operation | 6061h Modes of operation display | Optional  |

## Control word settings in CSV mode:

The following table lists the meanings of each bit in the control word (6040h) in CSV mode.

| Bit      | Name                  | Description                                                                                                                                                                                                                                             |  |  |
|----------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 0        | Switch on             | This bit must be set to 1 when the servo drive is enabled.                                                                                                                                                                                              |  |  |
| 1        | Enable voltage        | This bit must be set to 1 when the servo drive is enabled.                                                                                                                                                                                              |  |  |
| 2        | Quick stop            | This bit must be set to 1 when the servo drive is enabled. If this bit is set to 0, the servo drive stops quickly.                                                                                                                                      |  |  |
| 3        | Operation enable      | This bit must be set to 1 when the servo drive is enabled.                                                                                                                                                                                              |  |  |
| 4 to 6   | Reserved for CSV mode | Not supported                                                                                                                                                                                                                                           |  |  |
| 7        | Fault reset           | The system performs fault reset once when this bit changes<br>from 0 to 1. If system needs fault reset for multiple times, this<br>bit must change from 0 to 1 for multiple times.<br>When this bit is set to 1, other control references are inactive. |  |  |
| 8 to 10  | Reserved for CSV mode | Not supported                                                                                                                                                                                                                                           |  |  |
| 11 to 15 | Manufacturer-specific | Not supported                                                                                                                                                                                                                                           |  |  |

#### Status word definition in CSV mode:

The following table lists the meanings of each bit in the status word (6041h) in CSV mode.

| Bit | Name               | Description                                                                 |
|-----|--------------------|-----------------------------------------------------------------------------|
| 0   | Ready to switch on | 0: Inactive<br>1: Active (indicating that the servo drive can be enabled)   |
| 1   | Switched on        | 0: Inactive<br>1: Active (indicating that the servo drive can be enabled)   |
| 2   | Operation enabled  | 0: Inactive<br>1: Active (indicating that the servo drive has been enabled) |

| Bit      | Name                                    | Description                                                                     |  |  |
|----------|-----------------------------------------|---------------------------------------------------------------------------------|--|--|
| 3        | Servo drive fault                       | 0: No fault<br>1: Fault occurred                                                |  |  |
| 4        | Voltage enabled                         | 0: Inactive<br>1: Active (indicating that the servo drive can be enabled)       |  |  |
| 5        | Quick stop                              | 0: Active<br>1: Inactive                                                        |  |  |
| 6        | Switch on disabled                      | 0: Inactive<br>1: Active (indicating that the servo drive cannot be enabled)    |  |  |
| 7        | Alarm                                   | 0: No alarm<br>1: Alarm generated                                               |  |  |
| 9        | Remote control                          | 0: Inactive<br>1: Active (indicating that the control word has taken effect)    |  |  |
| 10       | Reserved for CSV mode                   | Not supported                                                                   |  |  |
| 11       | Internal software position limit status | it 0: Software position limit not reached<br>1: Software position limit reached |  |  |
| 12       | Target position following               | This bit remains 1 all the time.                                                |  |  |
| 13       | Reserved for CSV mode                   | Not supported                                                                   |  |  |
| 14 to 15 | Manufacturer-specific                   | Not supported                                                                   |  |  |

# Parameters related to CSV mode:

Dictionary objects related to CSV mode:

| Index | Sub-<br>index | Name               | Access | Data Type | Value Range               | Default |
|-------|---------------|--------------------|--------|-----------|---------------------------|---------|
| 6040h | 00            | Control word       | RW     | U16       | 0 to 65535                | 0       |
| 6041h | 00            | Status word        | RO     | U16       | -                         | -       |
| 6060h | 00            | Operation mode     | RW     | 18        | 0 to 10                   | 0       |
| 6061h | 00            | Mode display       | RO     | 18        | -                         | -       |
| 6064h | 00            | Position feedback  | RO     | 132       | -                         | -       |
| 606Ch | 00            | Actual speed       | RO     | I32       | -                         | -       |
| 6077h | 00            | Actual torque      | RO     | I16       | -                         | 0       |
| 607Eh | 00            | Reference polarity | RW     | U8        | 0 to 255                  | 0       |
| 60B1h | 00            | Speed deviation    | RW     | 132       | $-2^{31}$ to $(2^{31}-1)$ | 0       |

| Index | Sub-<br>index | Name            | Access | Data Type | Value Range               | Default |
|-------|---------------|-----------------|--------|-----------|---------------------------|---------|
| 60B2h | 00            | Torque offset   | RW     | I16       | -4000 to 4000             | 0       |
| 60FFh | 00            | Target velocity | RW     | I32       | $-2^{31}$ to $(2^{31}-1)$ | 0       |

#### CSV mode example:

Start and operation processes in CSV mode:

| Address                 | Name                       | Value                                                                             |
|-------------------------|----------------------------|-----------------------------------------------------------------------------------|
| 6060h                   | Control mode               | 9                                                                                 |
|                         | Enable                     | Random number $\rightarrow 6 \rightarrow 7 \rightarrow 15$ or MC_Power            |
| 6040h (control<br>word) | Alarm clearance            | Random number $\rightarrow 128$ (rising edge active, if the alarm can be cleared) |
|                         | Axis fault reset           | Host controller reference or PLC reference MC_Reset                               |
| 60FFh                   | Speed reference            | Host controller reference, PLC reference MC_<br>SyncMoveVelocity                  |
|                         | Axis deceleration to stop  | Host controller reference, PLC reference MC_Stop                                  |
|                         | Synchronization cycle time | Host controller reference (DC-SYn-chro)                                           |

# 4.1.8 Cyclic Synchronous Torque (CST) Mode

In CST mode, the host controller generates the torque slope change rate for reaching the target torque, and sends the target torque to the servo drive cyclically. The servo drive operates by following the target torque. When the CST mode is enabled, the object dictionary control mode (6060h) must be set to 10.

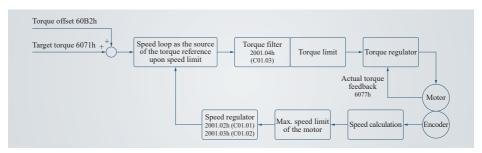



Figure 4-41 Control in CST mode

## Basic configurations recommended in CST mode:

| RPDO                     | TPDO                             | Remarks   |
|--------------------------|----------------------------------|-----------|
| 6040h Control word       | 6041h Status word                | Mandatory |
| 6071h Target Torque      | -                                | Mandatory |
| -                        | 6064h Position actual value      | Optional  |
| -                        | 606Ch Velocity actual value      | Optional  |
| -                        | 6077h Torque actual value        | Optional  |
| 6060h Modes of operation | 6061h Modes of operation display | Optional  |

## Control word settings in CST mode:

The following table lists the meanings of each bit in the control word (6040h) in CST mode.

| Bit      | Name                  | Description                                                                                                                                                                                                                                             |
|----------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0        | Switch on             | This bit must be set to 1 when the servo drive is enabled.                                                                                                                                                                                              |
| 1        | Enable voltage        | This bit must be set to 1 when the servo drive is enabled.                                                                                                                                                                                              |
| 2        | Quick stop            | This bit must be set to 1 when the servo drive is enabled. If this bit is set to 0, the servo drive stops quickly.                                                                                                                                      |
| 3        | Operation enable      | This bit must be set to 1 when the servo drive is enabled.                                                                                                                                                                                              |
| 4 to 6   | Reserved for CST mode | Not supported                                                                                                                                                                                                                                           |
| 7        | Fault reset           | The system performs fault reset once when this bit changes<br>from 0 to 1. If system needs fault reset for multiple times, this<br>bit must change from 0 to 1 for multiple times.<br>When this bit is set to 1, other control references are inactive. |
| 8 to 10  | Reserved for CST mode | Not supported                                                                                                                                                                                                                                           |
| 11 to 15 | Manufacturer-specific | Not supported                                                                                                                                                                                                                                           |

### Status word definition in CST mode:

The following table lists the meanings of each bit in the status word (6041h) in CST mode.

| Bit | Name               | Description                                                               |  |
|-----|--------------------|---------------------------------------------------------------------------|--|
| 0   | Ready to switch on | 0: Inactive<br>1: Active (indicating that the servo drive can be enabled) |  |
| 1   | Switched on        | 0: Inactive<br>1: Active (indicating that the servo drive can be enabled) |  |

| Bit      | Name                                    | Description                                                                  |
|----------|-----------------------------------------|------------------------------------------------------------------------------|
| 2        | Operation enabled                       | 0: Inactive<br>1: Active (indicating that the servo drive has been enabled)  |
| 3        | Servo drive fault                       | 0: No fault<br>1: Fault occurred                                             |
| 4        | Voltage enabled                         | 0: Inactive<br>1: Active (indicating that the servo drive can be enabled)    |
| 5        | Quick stop                              | 0: Active<br>1: Inactive                                                     |
| 6        | Switch on disabled                      | 0: Inactive<br>1: Active (indicating that the servo drive cannot be enabled) |
| 7        | Alarm                                   | 0: No alarm<br>1: Alarm generated                                            |
| 9        | Remote control                          | 0: Inactive<br>1: Active (indicating that the control word has taken effect) |
| 10       | Target torque                           | This bit remains 1 all the time.                                             |
| 11       | Internal software position limit status | 0: Software position limit not reached<br>1: Software position limit reached |
| 12       | Target torque following                 | This bit remains 1 all the time.                                             |
| 13       | Reserved for CST mode                   | Not supported                                                                |
| 14 to 15 | Manufacturer-specific                   | Not supported                                                                |

# Parameters related to CST mode:

Dictionary objects related to CST mode:

| Index | Sub-<br>index | Name             | Access | Data Type | Value Range   | Default |
|-------|---------------|------------------|--------|-----------|---------------|---------|
| 6040h | 00            | Control word     | RW     | U16       | 0 to 65535    | 0       |
| 6041h | 00            | Status word      | RO     | U16       | -             | -       |
| 6060h | 00            | Operation mode   | RW     | 18        | 0 to 10       | 0       |
| 6061h | 00            | Mode display     | RO     | 18        | -             | -       |
| 6071h | 00            | Target torque    | RW     | I16       | -4000 to 4000 | 0       |
| 6072h | 00            | Max. torque      | RW     | U16       | 0 to 4000     | 3000    |
| 6074h | 00            | Torque reference | RO     | I16       | -             | 0       |

| Index | Sub-<br>index | Name                  | Access | Data Type | Value Range       | Default   |
|-------|---------------|-----------------------|--------|-----------|-------------------|-----------|
| 6077h | 00            | Actual torque         | RO     | I16       | -                 | 0         |
| 607Eh | 00            | Reference polarity    | RW     | U8        | 0 to 255          | 0         |
| 607Fh | 00            | Max. speed            | RW     | U32       | 0 to $(2^{32}-1)$ | 104857600 |
| 60B2h | 00            | Torque offset         | RW     | I16       | -4000 to 4000     | 0         |
| 60E0h | 00            | Positive torque limit | RW     | U16       | 0 to 4000         | 3000      |
| 60E1h | 00            | Negative torque limit | RW     | U16       | 0 to 4000         | 3000      |

#### CST mode example:

Start and operation processes in CST mode:

| Address                 | Name                       | Value                                                                             |
|-------------------------|----------------------------|-----------------------------------------------------------------------------------|
| 6060h                   | Control mode               | 10                                                                                |
| 6071h<br>607Fh          | Torque/Speed reference     | Torque reference/speed limit                                                      |
|                         | Enable                     | Random number $\rightarrow 6 \rightarrow 7 \rightarrow 15$ or MC_Power            |
| 6040h (control<br>word) | Alarm clearance            | Random number $\rightarrow$ 128 (rising edge active, if the alarm can be cleared) |
|                         | Axis fault reset           | Host controller reference or PLC reference MC_Reset                               |
|                         | Synchronization cycle time | Host controller reference (DC-SYn-chro)                                           |

#### 4.1.9 Touch Probe Function

The touch probe function is used to latch the position. It can latch the position value (reference unit) when a DI signal or Z signal of the motor changes. The JSS715N series servo drive offers two touch probes to save position values corresponding to the rising edge and falling edge of each touch probe signal, which means a total of four position values can be latched simultaneously.

# NOTICE

- No specific DI logic is required when a DI is used to trigger the touch probe signal.
- You can set the filter window for the touch probe signal in 2010.2Bh (C10.2A) when a DI is used to trigger the touch probe signal.
- The touch probe function can be set only for the DI4 and DI5 high speed DIs.

# **Related parameters:**

| Index | Sub-<br>index | Name                 | Access | Data Type | Value Range | Default |
|-------|---------------|----------------------|--------|-----------|-------------|---------|
| 2004h | 0D            | DI4 function         | RW     | U16       | 0 to 65535  | 30      |
| 2004h | 11            | DI5 function         | RW     | U16       | 0 to 65535  | 31      |
| 60B8h | 0             | Touch Probe Function | RW     | U16       | 0 to 65535  | 0       |

Bit description for 60B8h:

| Bit      | Name                                   | Description                                                                                                               |  |
|----------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|
| 0        | Touch probe 1 function selection       | 0: Disabled<br>1: Enabled                                                                                                 |  |
| 1        | Touch probe 1 trigger mode             | <ul><li>0: Single trigger mode (Latches the position at the first trigger event.)</li><li>1: Continuous trigger</li></ul> |  |
| 2        | Touch probe 1 trigger signal selection | 0: DI signal<br>1: Z signal                                                                                               |  |
| 3        | Reserved                               | ·                                                                                                                         |  |
| 4        | Touch probe 1 positive edge            | 0: Switch off latching at positive edge<br>1: Enable latching at positive edge                                            |  |
| 5        | Touch probe 1 negative edge            | 0: Switch off latching at negative edge<br>1: Enable latching at negative edge                                            |  |
| 6 to 7   | Reserved                               | ·                                                                                                                         |  |
| 8        | Touch probe 2 function selection       | 0: Disabled<br>1: Enabled                                                                                                 |  |
| 9        | Touch probe 2 trigger mode             | <ul><li>0: Single trigger mode (Latches the position at the first trigger event.)</li><li>1: Continuous trigger</li></ul> |  |
| 10       | Touch probe 2 trigger signal selection | 0: DI signal<br>1: Z signal                                                                                               |  |
| 11       | Reserved                               | ·                                                                                                                         |  |
| 12       | Touch probe 2 positive edge            | 0: Switch off latching at positive edge<br>1: Enable latching at positive edge                                            |  |
| 13       | Touch probe 2 negative edge            | 0: Switch off latching at negative edge<br>1: Enable latching at negative edge                                            |  |
| 14 to 15 | Reserved                               | 1                                                                                                                         |  |

| Index | Sub-<br>index | Name               | Access | Data Type | Value Range | Default |
|-------|---------------|--------------------|--------|-----------|-------------|---------|
| 60B9h | 0             | Touch probe status | RO     | U16       | -           | 0       |

Bit description for 60B9h:

| Bi    | t  |     | Name                           |                                                                     | Des                            | scription |   |  |  |  |  |
|-------|----|-----|--------------------------------|---------------------------------------------------------------------|--------------------------------|-----------|---|--|--|--|--|
| 0     |    | Tou | ch probe 1 function selection  | 0: Disabled<br>1: Enabled                                           |                                |           |   |  |  |  |  |
| 1     |    | Tou | ch probe 1 positive edge value | 0: No positive edge value latched<br>1: Positive edge value latched |                                |           |   |  |  |  |  |
| 2     |    | Tou | ch probe 1 negative edge value | *                                                                   | e edge value<br>lge value latc |           |   |  |  |  |  |
| 3 to  | 7  | Res | erved                          |                                                                     |                                |           |   |  |  |  |  |
| 8     |    | Tou | ch probe 2 function selection  | 0: Disabled<br>1: Enabled                                           |                                |           |   |  |  |  |  |
| 9     |    | Tou | ch probe 2 positive edge value | *                                                                   | e edge value<br>lge value latc |           |   |  |  |  |  |
| 1(    | )  | Tou | ch probe 2 negative edge value | -                                                                   | e edge value<br>lge value latc |           |   |  |  |  |  |
| 11 to | 15 | Res | erved                          |                                                                     |                                |           |   |  |  |  |  |
|       |    |     |                                |                                                                     |                                |           |   |  |  |  |  |
| BAh   | (  | )   | Touch probe 1 positive edge    | RO                                                                  | I32                            | -         | 0 |  |  |  |  |

| 60BAh | 0 | Touch probe 1 positive edge         | RO | I32 | - | 0 |
|-------|---|-------------------------------------|----|-----|---|---|
| 60BBh | 0 | Touch probe 1 negative edge         | RO | I32 | - | 0 |
| 60BCh | 0 | Touch probe 2 positive edge         | RO | 132 | - | 0 |
| 60BDh | 0 | Touch probe 2 negative edge         | RO | I32 | - | 0 |
| 60D5h | 0 | Touch probe 1 positive edge counter | RO | U16 | - | 0 |
| 60D6h | 0 | Touch probe 1 negative edge counter | RO | U16 | - | 0 |
| 60D7h | 0 | Touch probe 2 positive edge counter | RO | U16 | - | 0 |
| 60D8h | 0 | Touch probe 2 negative edge counter | RO | U16 | - | 0 |

# 4.1.10 Software Position Limit

#### **Description:**

In conventional drives, the position limit is defined by external sensor signals connected to the DI of the servo drive.

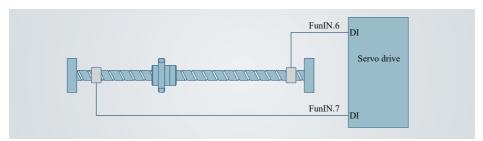



Figure 4-42 Installation of the limit switch

| Hardware Position Limit                                        | Software Position Limit                                                                 |
|----------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Restricted to linear motion and single-turn rotational motion. | Applicable to both linear motion and rotational motion.                                 |
| Requires an external mechanical limit switch.                  | Removes the need for hardware wiring, preventing malfunction due to poor cable contact. |
| Suffered from the risk of mechanical slip.                     |                                                                                         |
| Unable to sense or detect an overtravel fault after power-off. | Prevents malfunction due to mechanical slip through internal position comparison.       |

The software position limit works by comparing the limit value with the internal feedback value. If the latter exceeds the former, a warning will be reported and the servo drive stops. This function applies to both the absolute position mode and the incremental position mode. In incremental position mode, set 2006.08h (C06.07) to 2, which means the servo drive performs homing to find the mechanical home after power-on, and then enables the software position limit.

#### **Related parameters:**

| Index    | Parameter | Name                         | Options                                                 | Value<br>Range | Default | Unit | Data<br>Type | Modifica-<br>tion Mode | Effective<br>Time |
|----------|-----------|------------------------------|---------------------------------------------------------|----------------|---------|------|--------------|------------------------|-------------------|
| 2006.08h | C06.07    | Mechanical<br>limit position | 0: Disabled<br>1: Enabled<br>2: Enabled after<br>homing | 0 to 2         | 0       | -    | U16          | During operation       | Immediately       |

| Index    | Name                         | Access | PDO<br>Mapping | Data<br>Type | Unit              | Value Range               | Default            | Modifica-<br>tion Mode | Effective<br>Time |
|----------|------------------------------|--------|----------------|--------------|-------------------|---------------------------|--------------------|------------------------|-------------------|
| 607D.01h | Min. software position limit | RW     | RPDO           | I32          | Reference<br>unit | $-2^{31}$ to $(2^{31}-1)$ | -2 <sup>31</sup>   | During operation       | Immediately       |
| 607D.02h | Max. software position limit | RW     | RPDO           | I32          | Reference<br>unit | $-2^{31}$ to $(2^{31}-1)$ | 2 <sup>31</sup> -1 | During operation       | Immediately       |

# **▲** CAUTION

- Ensure the value of 607D.01 is lower than or equal to 607D.02. If 607D.01 is set to a value higher than 607D.02, the servo drive prompts Er841 (software position limit setting error).
- In absolute rotation mode or single-turn mode, ensure that 607D.01 and 607D.02 are within the mechanical position limit. Otherwise, the servo drive reports Er841.
- Ensure that the value of 607C (home offset) is within the software position limit. Otherwise, the servo drive reports Er843 (home offset outside the software position limit).

# Chapter 5

# **Absolute System**

# NOTICE

• The absolute encoder must carry a battery box.

# 5.1 Absolute System Setting

#### Overview

The absolute encoder, which carries a resolution of 131072 ( $2^{17}$ ) PPR, detects the motor position within one revolution and counts the number of revolutions, with 16-bit multi-turn data saved.

The absolute encoder system works in the position control, speed control, and torque control modes. When the servo drive is powered off, the encoder battery serves as the power supply to enable the encoder to back up data. The servo drive therefore can calculate the absolute mechanical position through the encoder after poweron, removing the need for homing.

When JSS715N series servo drive matches the absolute encoder, set 2000.08h (C00.07) to (absolute system selection) based on actual conditions. Er208 (encoder battery fault) will be reported when the battery is connected for the first time. In this case, set 2031.11h (F31.10) to reset the encoder fault, and then perform homing.

# NOTICE

- When the value of 2000.02h (C00.01) (rotation direction) or 2031.11h (F31.10) (absolute encoder reset selection), or the electronic gear ratio is changed, the mechanical position will change abruptly, requiring a homing operation.
- After homing is done, the deviation between the mechanical absolute position and that saved in the encoder will be calculated automatically and saved in the EEPROM of the servo drive.

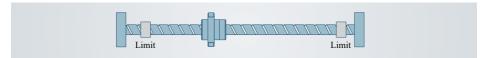
#### Absolute system setting

Set 2000.08h (C00.07) to select the absolute position mode.

| Index | Parameter | Name             | Options                                                                                                                                                                                                                                                                                                                                  | Value<br>Range | Default | Unit | Data<br>Type | Modifica-<br>tion Mode | Effective<br>Time    |
|-------|-----------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------|------|--------------|------------------------|----------------------|
| 08h   | C00.07    | Absolute<br>mode | <ol> <li>Incremental position<br/>mode</li> <li>Absolute position linear<br/>mode</li> <li>Absolute position linear<br/>infinite mode</li> <li>Absolute position<br/>single-turn mode</li> <li>Absolute position<br/>rotation mode</li> <li>Absolute mechanical<br/>single-turn mode<br/>(operating direction<br/>selectable)</li> </ol> | 0 to 5         | 0       | _    | U16          | At stop                | Upon re-<br>power-on |

#### **Related parameters:**

#### Encoder feedback data


The feedback data of an absolute encoder includes the number of revolutions and the motor position within one revolution. In incremental position mode, the number of revolutions will not be counted.

#### **Related parameters:**

| Index | Parameter | Name                                      | Options | Value<br>Range            | Default | Unit | Data<br>Type | Modifica-<br>tion Mode | Effective<br>Time |
|-------|-----------|-------------------------------------------|---------|---------------------------|---------|------|--------------|------------------------|-------------------|
| 1Dh   | U40.1C    | Encoder single-turn data                  | -       | $-2^{31}$ to $(2^{31}-1)$ | 0       | Р    | I32          | -                      | Immediately       |
| 1Fh   | U40.1E    | Encoder multi-turn position data          | -       | 0 to 65535                | 0       | Rev  | U16          | -                      | Immediately       |
| 21h   | U40.20    | Encoder multi-turn<br>data (low 32 bits)  | -       | $-2^{31}$ to $(2^{31}-1)$ | 0       | Р    | I32          | -                      | Immediately       |
| 23h   | U40.22    | Encoder multi-turn<br>data (high 32 bits) | -       | $-2^{31}$ to $(2^{31}-1)$ | 0       | Р    | I32          | -                      | Immediately       |

# 5.2 Absolute Position Linear Mode

This mode applies to scenarios where the axis travel range is fixed without multi-turn data overflow.



The value range of 2000.08h=1 (C00.07) (encoder multi-turn data) in absolute position linear infinite mode is 0 to 65535. If the number of forward or reverse revolutions is greater than 65535, ErA01 (encoder multi-turn counting overflow) will occur. In this case, set 2031.11h (F31.10) to 4 to reset the multi-turn data, and then perform homing again. In special occasions, you can set 2000.08h (C00.07) to 2 in absolute position linear infinite mode to prevent the encoder overflow alarm.

#### **Related parameters:**

| Index | Parameter | Name                                                           | Options | Value Range               | Default | Unit                | Data<br>Type |   | Effective<br>Time |
|-------|-----------|----------------------------------------------------------------|---------|---------------------------|---------|---------------------|--------------|---|-------------------|
| 17h   | U40.16    | Absolute<br>position feedback<br>(reference unit)              | -       | $-2^{31}$ to $(2^{31}-1)$ | 0       | Unit in application | I32          | - | Immediately       |
| 25h   | U40.24    | Absolute position<br>feedback (encoder<br>unit) (low 32 bits)  | -       | $-2^{31}$ to $(2^{31}-1)$ | 0       | Р                   | I32          | - | Immediately       |
| 27h   | U40.26    | Absolute position<br>feedback (encoder<br>unit) (high 32 bits) |         | $-2^{31}$ to $(2^{31}-1)$ | 0       | Р                   | I32          | - | Immediately       |

| Index | Sub-<br>index | Name              | Access | PDO<br>Mapping | Data<br>Type | Unit           | Value<br>Range | Default | Modifica-<br>tion Mode |   |
|-------|---------------|-------------------|--------|----------------|--------------|----------------|----------------|---------|------------------------|---|
| 6063h | 0             | Position feedback | RO     | TPDO           | I32          | Encoder unit   | -              | -       | -                      | - |
| 6064h | 0             | Position feedback | RO     | TPDO           | I32          | Reference unit | -              | -       | -                      | - |

# 5.3 Absolute Position Rotation Mode

This mode applies in cases where the load travel range is unlimited and the number of unidirectional revolutions is less than 32767, as shown in the following figure.

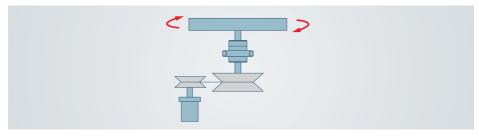
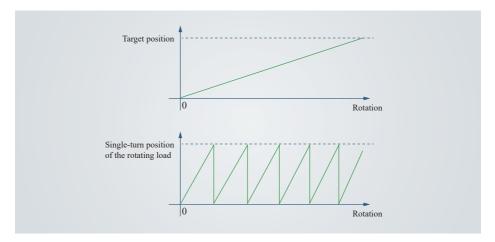




Figure 5-1 Rotating load

The single-turn position range of the rotating load is 0 to  $(R_M - 1)$   $(R_M:$  Encoder pulses per load revolution). When the gear ratio is 1:1, the variation law of the target position and the single-turn position of the rotating

load during forward operation is as follows.



The variation law of the target position and the single-turn position of the rotating load during reverse operation is as follows.



When the motor works in the absolute position rotation mode while the servo drive works in HM mode, the home offset range is 0 to  $(R_M - 1)$ .

# NOTICE

• The servo drive calculates the upper limit of the mechanical absolute position using 2010.1Bh (C10.1A) and 2010.1Dh (C10.1C) first. If 2010.1Bh (C10.1A) and 2010.1Dh (C10.1C) are both set to 0, the servo drive employs the electronic gear ratio 2010.19h (C10.18) and 2010.1Ah (C10.19) for calculation.

#### **Related parameters:**

| Index | Parameter | Name                                                                                 | Options | Value<br>Range            | Default | Unit                | Data<br>Type | Modifica-<br>tion Mode | Effective<br>Time |
|-------|-----------|--------------------------------------------------------------------------------------|---------|---------------------------|---------|---------------------|--------------|------------------------|-------------------|
| 19h   | C10.18    | Numerator of<br>electronic gear ratio<br>in rotation mode                            | -       | 1 to 65535                | 1       | -                   | U16          | At stop                | Immediately       |
| 1Ah   | C10.19    | Denominator of<br>electronic gear ratio<br>in rotation mode                          | -       | 1 to 65535                | 1       | -                   | U16          | At stop                | Immediately       |
| 1Bh   | C10.1A    | Upper limit of<br>mechanical absolute<br>position in rotation<br>mode (low 32 bits)  | -       | 0 to $(2^{32}-1)$         | 0       | Р                   | U32          | At stop                | Immediately       |
| 1Dh   | C10.1C    | Upper limit of<br>mechanical absolute<br>position in rotation<br>mode (high 32 bits) | -       | 0 to $(2^{32}-1)$         | 0       | Р                   | U32          | At stop                | Immediately       |
| 29h   | U40.28    | Position feedback<br>in rotation mode<br>(reference unit) (low<br>32 bits)           | -       | $-2^{31}$ to $(2^{31}-1)$ | 0       | Unit in application | I32          | -                      | Immediately       |
| 2Bh   | U40.2A    | Position feedback<br>in rotation mode<br>(encoder unit) (low<br>32 bits)             | -       | $-2^{31}$ to $(2^{31}-1)$ | 0       | Р                   | I32          | -                      | Immediately       |
| 2Dh   | U40.2C    | Position feedback<br>in rotation mode<br>(encoder unit) (high<br>32 bits)            | -       | $-2^{31}$ to $(2^{31}-1)$ | 0       | Р                   | I32          | -                      | Immediately       |

| Index | Sub-<br>index | Name              | Access | PDO<br>Mapping | Data<br>Type | Unit           | Value<br>Range | Default | Modifica-<br>tion Mode |   |
|-------|---------------|-------------------|--------|----------------|--------------|----------------|----------------|---------|------------------------|---|
| 6063h | 0             | Position feedback | RO     | TPDO           | I32          | Encoder unit   | -              | -       | -                      | - |
| 6064h | 0             | Position feedback | RO     | TPDO           | I32          | Reference unit | -              | -       | -                      | - |

### 5.4 Absolute Position Single-turn Mode

In this mode, the absolute encoder needs no battery and does not record the number of motor revolutions. The input range for the target position of the EtherCAT host controller is  $-2^{31}$  to  $(2^{31} - 1)$ , with no need for modulus operation on the encoder resolution. The initial position for feedback upon each power-on is the single-turn absolute position. For a 17-bit encoder, the value range of 6064 is 0 to  $(2^{17} - 1)$  for each power-on. If the value of C00.07 remains 3 (absolute position single-turn mode), after homing (homing mode of the servo drive, that is, 6060 = 6), the servo drive saves the absolute position of the encoder after homing and the value of 607C (home offset). Upon power-up again, the value of 6064 (current position feedback) will be calculated based on the coordinate system after the last homing operation, eliminating the need for rehoming.

If 60E6h (absolute position single-turn mode) is inactive, after successful homing, the value of 6064 (position feedback) is equal to that of 607C (home offset).

#### **Related parameters:**

| Index | Sub-<br>index | Name              | Access | PDO<br>Mapping | Data<br>Type | Unit           | Value<br>Range | Default | Modifica-<br>tion Mode |   |
|-------|---------------|-------------------|--------|----------------|--------------|----------------|----------------|---------|------------------------|---|
| 6063h | 0             | Position feedback | RO     | TPDO           | I32          | Encoder unit   | -              | -       | -                      | - |
| 6064h | 0             | Position feedback | RO     | TPDO           | I32          | Reference unit | -              | -       | -                      | - |

### 5.5 Precautions for Use of the Absolute system Battery Box

Er208 (encoder battery fault) will be reported when the battery is connected for the first time. In this case, set 2031.11h (F31.10) to reset the encoder fault, power on again, and then perform the absolute position device operation.

When the battery voltage detected is lower than 3.0 V, ALF90 (encoder battery warning) will be reported. In this case, replace the battery based on the following steps:

- 1 Power on the servo drive and make it stay in the non-operational state.
- 0 Replace the battery.
- ③ After ALF90 (encoder battery warning) is automatically cleared, if no other warning/fault occurs, you can continue operating the servo drive.

If you replace the battery after power-off, Er208 (encoder battery fault) will be reported, with the multi-turn data changed abruptly. In this case, set 2031.11h (F31.10) to 4 to reset the fault, and then perform homing again.

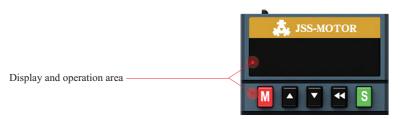
Ensure the motor speed does not exceed 6000 RPM after the servo drive is powered off. This is to enable the encoder to save the position data accurately.

Keep the battery in environments within the required ambient temperature and ensure the battery is in reliable contact with sufficient power reserved. Failure to comply may result in encoder data loss.

# NOTICE

• The absolute position saved by the encoder changes abruptly after multi-turn data reset. In this case, perform mechanical homing.

#### **Related parameters:**


| Index | Parameter | Name               | Options | Value<br>Range | Default | Unit |     | Modifica-<br>tion Mode | Effective<br>Time |
|-------|-----------|--------------------|---------|----------------|---------|------|-----|------------------------|-------------------|
| 11h   | F31.10    | Encoder data reset | -       | 0 to 31        | 0       | -    | U16 | At stop                | Immediately       |

# **Chapter 6**

# System Commissioning

# 6.1 Commissioning Tool

The JSS715N series servo drive can be commissioned by the operating panel which consists of an LED display area and five buttons.



## 6.1.1 Buttons

| Button |       | Description                                                                                                                                                                                                            |  |  |
|--------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Μ      | MODE  | <ul> <li>Press:</li> <li>Switch/return to menus of different levels</li> <li>Press and hold:</li> <li>Switch the group number quickly in level-2 menus</li> </ul>                                                      |  |  |
|        | UP    | Press:<br>• Switch the state display quickly in level-1 menus<br>• Increase the value                                                                                                                                  |  |  |
|        | DOWN  | Press:<br>• Switch the state display quickly in level-1 menus<br>• Decrease the value                                                                                                                                  |  |  |
| -1     | SHIFT | <ul> <li>Press:</li> <li>Move the cursor to the left</li> <li>Press and hold:</li> <li>Enter the JOG mode quickly in level-1 menus</li> <li>Page up or down when the content is displayed on multiple pages</li> </ul> |  |  |
| S      | SET   | Press:<br>• Switch to the lower-level menu<br>• Execute commands such as storing parameter setpoints                                                                                                                   |  |  |

## 6.1.2 Display

When the servo drive is running, the servo drive status, parameters, faults, and monitored values are displayed in the LED display area.

Status display: Display current servo drive status, such as servo ready or servo running.

Parameter display: Display parameters and their setpoints.

Fault display: Display faults and alarms that occurred on the servo drive.

Monitored value display: Display values of running parameters of the servo drive.

## NOTICE

- After power-on, "Init" is displayed in the LED display area and then the system enters the level-1
  menu status display mode.
- In the status display mode, select the parameter to be monitored. When the motor rotates, the display area automatically switches to monitored value display. After the motor stops, the display area automatically returns to status display.
- In the parameter display mode, after you select the parameter to be monitored, the system switches
  to monitored value display.
- Once a fault occurs, the LED display area switches to fault display automatically, with all the LEDs blinking. Press 5 to stop the LEDs from blinking, and then press M to switch to parameter display.

#### Display menu

• Level-1 menu: Status display



- ① Display of the model with brake
- ② Status of the network port
- ③ Communication status
- (4) Running mode
- (5) Servo status
- Press  $\land$  and  $\lor$  to switch among different display modes.

Press M to enter a level-2 menu.

• Level-2 menu: Display the parameter group number in hexadecimal

- C: Function parameter R: System parameter
- F: Operation parameter
- U: Monitoring parameter

Parameter group number

Press and hold M to switch the group number.

Press **S** to enter a level-3 menu.

Press M to return to the level-1 menu.

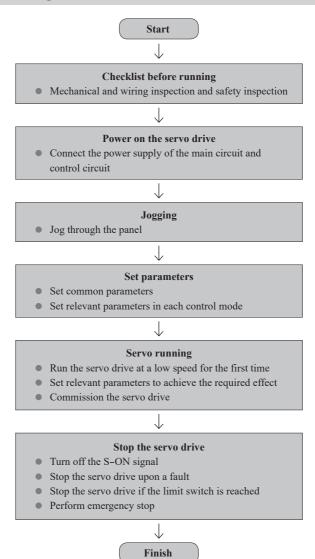
• Level-3 menu: Offset within the parameter group in hexadecimal

| Offset within the parameter group                                |
|------------------------------------------------------------------|
| Press S to enter a level-4 menu.                                 |
| Press M to return to a level-2 menu.                             |
| Level-4 menu: Parameter setpoints in decimal                     |
| Press <b>A V</b> to increase or decrease the value.              |
| Press <b>S</b> to confirm the setting. Then, the system displays |
| Press M to return to a level-3 menu.                             |

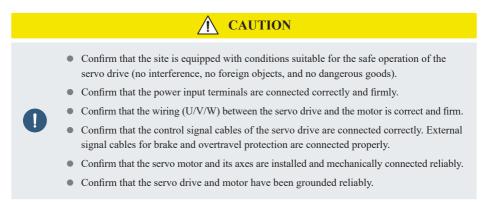
Status display

| LED Display | Meaning                           | Description                                                                                                                                                                                                                                            |  |  |
|-------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|             | ① Display of the model with brake | On: Model with brake<br>Off: Model without brake                                                                                                                                                                                                       |  |  |
|             | ② Status of the network port      | No display: No network port is connected.<br>" displayed: The OUT network port is<br>connected.<br>" " displayed: The IN network port is<br>connected.                                                                                                 |  |  |
|             | ③ Communication status            | 0: No meaning<br>1: Initializing<br>2: Pre-operation<br>4: Operating safely<br>8: Running                                                                                                                                                              |  |  |
|             | ④ Running mode                    | <ol> <li>Profile position mode</li> <li>Profile velocity mode</li> <li>Profile torque mode</li> <li>Homing mode</li> <li>Cyclic synchronous position mode</li> <li>Cyclic synchronous velocity mode</li> <li>Cyclic synchronous torque mode</li> </ol> |  |  |
|             | ⑤ Servo status                    | nr: Servo not ready<br>rd: Servo ready<br>rn: Servo running                                                                                                                                                                                            |  |  |

## Parameter display


| Category                                                                                                                                  | LED Display                          |
|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Signed number with 4 digits and below:                                                                                                    |                                      |
| Display on one page (5 digits)                                                                                                            | - 8888                               |
| When the rightmost "•" is turned on, the high bit "" indicate a negative sign.                                                            |                                      |
| Unsigned number with 5 digits and below:                                                                                                  |                                      |
| Display on one page (5 digits)                                                                                                            | 85585                                |
| Signed number with more than 4 digits:                                                                                                    | 1                                    |
| Such numbers are displayed from low to high bits in multiple page                                                                         | ges (5 digits per page).             |
| For a negative value, when the rightmost "•" is turned on, the high                                                                       | h bit "" indicate a negative sign.   |
| Such numbers are displayed in the format of "number of current p                                                                          | page + values on current page".      |
| To switch to the next page, press and hold $\triangleleft$ for more than 2 sec                                                            | onds.                                |
| Page 1 Page 2                                                                                                                             | Page 3                               |
| Four low bits                                                                                                                             | e bits                               |
| Indicate the low-bit page Indicate the middle                                                                                             | -bit page Indicate the high-bit page |
| Unsigned number with more than 5 digits:                                                                                                  |                                      |
| Such numbers are displayed from low to high bits in multiple pag                                                                          | es (5 digits per page).              |
| Such numbers are displayed in the format of "number of current p<br>switch to the next page, press and hold <b>for</b> more than 2 second | • . •                                |
| Page 1 Page 2                                                                                                                             | Page 3                               |
|                                                                                                                                           | e bits                               |
| Indicate the low-bit page Indicate the middle                                                                                             |                                      |

## Fault display


- The panel displays the current or history faults and alarm codes. For analysis and troubleshooting of faults and alarms, see the section "Troubleshooting".
- When a single fault or an alarm occurs, the panel displays the fault or alarm code. When multiple faults or alarms occur, the panel displays the fault code of the highest level.



## 6.2 Commissioning Process



# 6.3 Commissioning Procedure



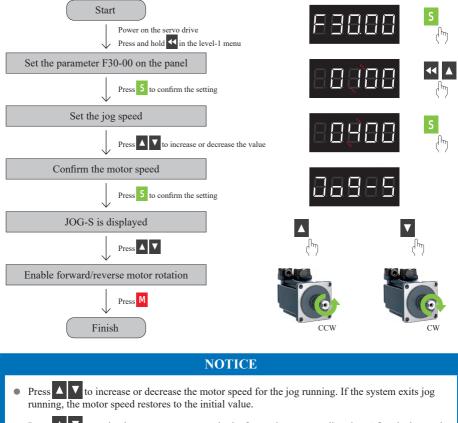
#### 6.3.1 Power on the servo drive

# NOTICE

- Single-phase input: The power terminals are L1 and L2.
- Three-phase input: The power terminals are R, S, and T for the main circuit or L1C and L2C for the control circuit.

After the input power supply is connected:

- The LED panel displays which means that the servo drive is ready to run and is waiting for the S-ON signal from the host controller.
- If the LED panel keeps displaying **EEED** or other faults, troubleshoot the problem according to the section "Troubleshooting".


### 6.3.2 Jogging

Use the jogging function for trial run of the servo motor and servo drive to check whether the servo motor rotates properly without abnormal vibration or noise generated during rotation.

During the jog, use F30.03 to set the acceleration/deceleration time constant for the velocity/position reference.



• To use the jogging function, deactivate the S-ON signal. Otherwise, this function cannot be used.



Procedure for setting the jogging function:

• Press **t** to make the servo motor rotate in the forward or reverse direction. After the button is released, the servo motor stops running immediately.

### 6.3.3 Set parameters

#### Select the rotation direction

Set C00.01 (2000.02h, rotation direction) to change the direction of motor rotation without modifying the input command polarity.

#### Set the brake

The brake is used to prevent the servo motor shaft from moving and lock the motor position when the servo drive is not running. This is to keep the mechanical load from moving due to gravity or external force.

# NOTICE

- The built-in brake is a special non-energized mechanism designed for position-lock in the stop state. Do not use the built-in brake for any other purposes, such as braking.
- The brake coil has no polarity.
- Switch off the S-ON signal after the servo motor stops.
- When the motor with a built-in brake runs, the brake may generate a click sound, which does not affect its function.
- When brake coils are energized (the brake is released), flux leakage may occur on the shaft end. Pay special attention when using magnetic sensors near the motor.

For the servo motor with a brake, assign function 3 (brake output) to a DO terminal (DO3 by default) of the servo drive and set valid logic for the DO terminal.

The operating time sequences of the brake are different between normal state and fault state of the servo drive.

The brake time sequence in the normal state changes with the motor states: static and rotating.

- Static: The motor speed is lower than 30 rpm.
- Rotating: The motor speed is equal to or greater than 30 rpm.

#### Brake time sequence in the motor static state:

 If the servo enabling (S-ON) signal changes from ON to OFF, and the present motor speed is lower than 30 rpm, the servo drive acts according to the brake time sequence in the motor static state.



 After the brake (BK) output signal changes from OFF to ON, do not input a position/speed/torque reference within the time defined by C05.13. Otherwise, reference loss or running error may occur.

# NOTICE

• When the motor is used to drive a vertical axis, the mechanical motion part may move slightly due to the gravity or external force. In the motor static state, if the S-ON signal becomes OFF, the brake (BK) output signal becomes OFF immediately. However, within the time defined by C05.10, the motor is still energized to prevent the mechanical motion part from moving due to the gravity or external force.

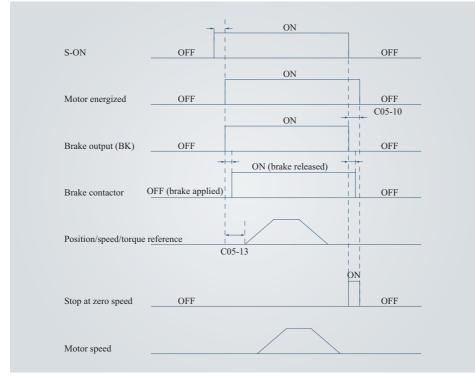



Figure 6-1 Brake time sequence in the motor static state

### Brake time sequence in the motor rotating state:

• If the S-ON signal changes from ON to OFF, and the present motor speed is equal to or greater than 30 rpm, the servo drive acts according to the brake time sequence in the motor rotating state.



• If the S-ON signal changes from OFF to ON, do not input a position/speed/torque reference within the time defined by C05.13. Otherwise, reference loss or running error may occur.

# NOTICE

- If the S-ON signal becomes OFF during motor rotating, the servo motor enters the "Stop according to ramp in 6085h" state, but the brake (BK) output signal becomes OFF only after one of the following conditions is met:
  - The motor has decelerated to the value defined by C05.11, but the time defined by C05.12 is not reached.
  - The time defined by C05.12 has been reached, but the motor speed is still higher than the value defined by C05.11.
- After the brake (BK) output signal changes from ON to OFF, the motor remains energized within the time defined in C05.10 to prevent the mechanical motion part from moving due to the gravity or external force.

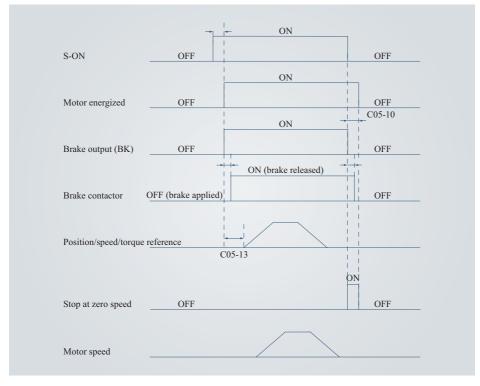



Figure 6-2 Brake time sequence in the motor rotating state

### Set the brake

When the torque and speed directions of the motor are opposite, the energy is transferred from the motor to the drive, increasing the bus voltage. When the voltage is increased to the braking point, the energy can be consumed only by the braking resistor. In this case, the braking energy must be consumed according to the braking requirements. Otherwise, the servo drive may be damaged.



- Set the power (C00.11) and resistance (C00.12) for the external braking resistor properly. Otherwise, the braking function may be affected.
- When an external braking resistor is used, check whether its resistance is above the minimum allowable resistance.
- In a natural environment, the temperature of the resistor will rise above 120°C (under continuous braking) when the average power of the braking resistor is below its rated power. For safety consideration, use forced cooling to cool down the braking resistor or use a braking resistor with a thermal switch. Consult the manufacturer about load characteristics of the braking resistor.

Set the heat dissipation coefficient (C00.13) based on the heat dissipation condition of the external braking resistor.

### 6.3.4 Servo running

Switch on the S-ON signal. When the servo drive is ready to run, the LED panel displays

If there is no command input at this moment, the servo motor does not rotate and stays locked. After a command is input, the servo motor starts rotating.

### NOTICE

### Operation of the servo drive

- During initial operation, set a proper command to make the motor run at low speed and check whether the motor rotates properly.
- Check whether the motor rotates in the correct direction. If the direction of rotation is opposite to the expected direction, check the reference signal and reference direction signal.
- If the motor rotates in the correct direction, you can view the actual motor speed in U40.01 (2040.02h) and the average load factor in U40.07 (2040.08h) through the drive panel.
- After checking preceding conditions, adjust related parameters to make the motor operate as desired.
- Adjust the servo drive parameters according to the section "Gain Tuning".

### 6.3.5 Stop the servo drive

Five type of stop modes are available for the servo drive: coast to stop, stop at zero speed, ramp to stop, stop at emergency-stop torque, and dynamic braking (DB) stop, along with three kinds of stop status: de-energized, position lock, and DB. After brake output is enabled, the servo drive selects a stop mode.

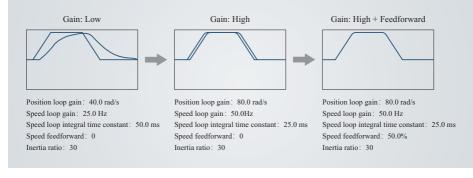
| Stop Mode                     | Description                                                                                                                               | Feature                                                                                    |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Coast to stop                 | The servo motor is de-energized and coasts to 0 RPM. The deceleration time is affected by the mechanical inertia and mechanical friction. | This mode features smooth and slow deceleration with small mechanical shock.               |
| Stop at zero speed            | The servo motor decelerates to 0 RPM immediately and stops.                                                                               | This mode features quick deceleration with obvious mechanical shock.                       |
| Ramp to stop                  | The motor decelerates to 0 RPM smoothly upon position/speed/torque reference input.                                                       | This mode features smooth and<br>controllable deceleration with small<br>mechanical shock. |
| Stop at emergency-stop torque | The servo drive outputs a reverse braking torque to stop the motor.                                                                       | This mode features quick deceleration with obvious mechanical shock.                       |
| Dynamic braking               | The servo motor is in the dynamic braking status.                                                                                         | This mode features quick deceleration with obvious mechanical shock.                       |

Table 6-1Comparison of the stop modes

| Table 6-2 | Comparison of the stop statuses |  |
|-----------|---------------------------------|--|
|-----------|---------------------------------|--|

| Stop Status     | Description                                                                                        |
|-----------------|----------------------------------------------------------------------------------------------------|
| De-energized    | The motor is de-energized and the motor shaft can rotate freely after the motor stops rotating.    |
| Position lock   | The motor shaft is locked and cannot rotate freely after the motor stops rotating.                 |
| Dynamic braking | The motor is de-energized and the motor shaft cannot rotate freely after the motor stops rotating. |

| Table 6-3 | Comparison | of the stop modes |
|-----------|------------|-------------------|
|-----------|------------|-------------------|


| Stop Mode           | Stop Mode<br>(Model<br>Without<br>Brake) | Stop Mode (Model with Brake)                                           | Description                                                                                                                 |  |  |
|---------------------|------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--|--|
| Stop at<br>S-ON OFF | 605Ch                                    | Ramp to quick stop as defined by 6085h, keeping dynamic braking status | Deactivate the S-ON signal through<br>communication to make the servo drive stop<br>according to the stop mode at S-ON OFF. |  |  |

| Stop Mode             | Stop Mode<br>(Model<br>Without<br>Brake) | Stop Mode (Model with Brake)                                                            | Description                                                                                                                                                                 |
|-----------------------|------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Stor of foult         | No.1 fault:<br>C05.03                    | No. 1 fault: Dynamic braking<br>stop, keeping dynamic braking<br>status                 | The stop mode varies with the fault type.<br>For fault classification, see sections related<br>to faults.                                                                   |
| Stop at fault         | No.2 fault:<br>605Eh                     | Ramp to quick stop as defined by 6085h, keeping dynamic braking status                  | -                                                                                                                                                                           |
| Stop at<br>overtravel | <sup>+</sup> C05.02 by 6085h, keeping p  |                                                                                         | When a mechanical motion part moves<br>beyond the range of safe movement, the<br>limit switch outputs a level change to force<br>the servo motor to stop.                   |
| Emergency<br>stop     | 605Ah                                    | 605Ah < 4: Ramp to quick stop<br>as defined by 6085h, keeping<br>dynamic braking status | Use the DI function 4 for emergency stop<br>(Note: The stop mode is specified by 605Ah.<br>The final stop state is S-ON OFF.)                                               |
| Quick stop            | 605Ah                                    | 605Ah < 4: Ramp to quick stop<br>as defined by 6085h, keeping<br>dynamic braking status | Quick stop applies when bit 2 (Quick stop)<br>of the control word 6040h is set to 0 during<br>operation of the servo drive.                                                 |
| Halt                  | 605Dh                                    |                                                                                         | The halt function applies when bit 8 of the control word 6040h is set to 1 (Halt) during operation of the servo drive. The halt mode is defined by object dictionary 605Dh. |

## Chapter 7 Gain Tuning

#### 7.1 Overview

The servo drive must drive the motor as quick and accurate as possible to follow the commands from the host controller or internal setting. A proper gain tuning is required to make the motor actions more closely follow the commands and to maximize the performance of the servo system.



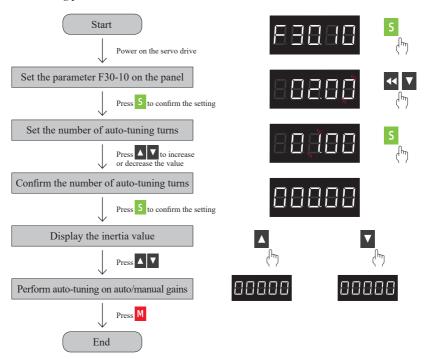


Before gain tuning, perform a trial run through jogging to ensure the motor operates properly.

#### 7.2 Inertia Auto-tuning

The load inertia ratio is the ratio of the total moment of inertia of motor load to the moment of inertia of the motor. The load inertia ratio is a critical parameter of the servo system. A correct load inertia ratio facilitates commissioning.

You can set the C00.06 (load inertia ratio) manually based on the weight and composition of different mechanical parts, but the operation is very tedious. It is increasingly difficult to get the correct solution for the complex mechanical composition. However, it can also be automatically auto-tuned by F30.10 (inertia auto-tuning function) of the servo drive.

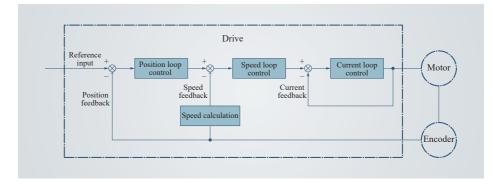

During auto-tuning, the drive will drive the servo motor to run in the forward or reverse direction multiple times, so as to obtain the load inertia ratio.

### NOTICE

Inertia auto-tuning may fail in the following conditions:

- The load mechanical system is poor, with low stiffness and vibration during localization.
- The motor operation range is too small, less than 0.5 turns.
- The load torque changes dramatically.
- The motor acceleration rate is less than 3000 rpm/s.
- The actual maximum speed of the motor is less than 150 rpm.

#### Inertia auto-tuning process:




| Parameter | Name               | Value<br>Range | Default | Unit | Options | Modifica-<br>tion Mode | Effective<br>Time |
|-----------|--------------------|----------------|---------|------|---------|------------------------|-------------------|
| C00.06    | Load inertia ratio | 0 to 12000     | 100     | %    | -       | During operation       | Immediately       |

| Parameter | Name                                                                  | Value<br>Range | Default | Unit  | Options                                                                                          | Modifica-<br>tion Mode | Effective<br>Time |
|-----------|-----------------------------------------------------------------------|----------------|---------|-------|--------------------------------------------------------------------------------------------------|------------------------|-------------------|
| C07.00    | Offline inertia auto-tuning mode setting                              | 0 to 785       | 769     | -     | Related modes during the auto-tuning are set.                                                    | At stop                | Immediately       |
| C07.01    | Offline inertia auto-tuning speed reference                           | 50 to 8000     | 500     | rpm   | The speed reference for auto-tuning is set.                                                      | At stop                | Immediately       |
| C07.02    | Acceleration/<br>Deceleration time for<br>offline inertia auto-tuning | 0 to 65535     | 100     | ms    | The acceleration/<br>deceleration time for<br>auto-tuning is set.                                | At stop                | Immediately       |
| C07.03    | Offline inertia auto-<br>tuning target torque                         | 1 to 1500      | 150     | 0.1%  | A larger target torque<br>leads to shorter auto-<br>tuning acceleration/<br>deceleration time.   | At stop                | Immediately       |
| C07.04    | Offline inertia auto-tuning revolutions                               | 10 to 65535    | 200     | 0.01r | The number of auto-<br>tuning revolutions<br>should be within the<br>mechanical motion<br>range. | At stop                | Immediately       |

### 7.3 Basic Gain Tuning

The servo system consists of three feedback loops, which are the position loop, speed loop, and current loop. The basic control diagram is shown in the following figure.



### **<u>A</u>** CAUTION

• The responsiveness of the inner loop must be higher than that of the outer loop. Otherwise, the responsiveness may be poor or vibrations may occur.

The default current loop gain of the servo drive ensures sufficient responsiveness, removing the need for further tuning. You only need to adjust the position loop gain, speed loop gain, and other auxiliary gains. Therefore, to ensure system stability during gain tuning in position control mode, the position loop gain must be increased together with the speed loop gain, and the responsiveness of the former must be lower than the latter.

The drive provides three types of gain auto-tuning modes:

- 0: Manual tuning
- 1: Standard tuning by stiffness level
- 2: Positioning mode

When the automatic gain tuning does not achieve the expected effect, you can manually fine-tune the gain. The effect can be optimized by more detailed tuning.

The following table lists the basic gain parameter tuning methods.

| No. | Parameter | Name               | Description                                                                                                                                                                                                                                                                                                                                                                            |
|-----|-----------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |           | Position loop gain | Function: Determines the responsiveness of the position loop of<br>the servo unit. Increasing the position loop gain improves the<br>responsiveness and shortens the positioning time. In general, the<br>position loop gain cannot exceed the range of the certain vibration<br>count of the mechanical system.                                                                       |
| 1   | C01.00    |                    | Tuning method: To ensure system stability, the gain frequency of the speed loop must be 3 to 5 times that of the position loop.                                                                                                                                                                                                                                                        |
|     | C01.01    | Speed loop gain    | Function: Determines the speed loop responsiveness. Too low<br>responsiveness of the speed loop may be a delay factor of the outer<br>position loop, so overshoot or a variable speed reference occurs.<br>Therefore, within the non-vibration range of the mechanical system,<br>increasing the setpoint stabilizes the speed and improves the<br>responsiveness of the servo system. |
| 2   |           |                    | Increase the value of C01-01 Actual speed                                                                                                                                                                                                                                                                                                                                              |

| No. | Parameter | Name                                           | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|-----|-----------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 3   | C01.02    | Speed loop<br>integral time<br>constant        | Function: To respond to even minor inputs, the speed loop contains<br>an integral element. Since this integral element acts as a delay<br>element for the servo system, when the time parameter is set too<br>large, it will cause overshoot, or extend the positioning time, making<br>the response worse.<br>Speed reference<br>Lower C01-02 Actual speed<br>Tuning method: Reducing the setpoint can enhance the integral<br>effect and shorten the positioning time, but setting the value too low<br>can easily cause mechanical vibration. If the value is set too high, |  |  |  |  |
|     |           |                                                | the speed loop deviation will never return to zero.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| 4   | C01.03    | Torque reference<br>filter cutoff<br>frequency | Function: This parameter applies a low-pass filter to the torque reference, where the setpoint is the cutoff frequency of the low-pass filter. The smaller the setpoint, the better the filtering effect. Setting the value too low can cause excessive delay in the speed loop, thereby reducing the speed loop bandwidth. When mechanical vibrations occur, adjusting the following torque reference filter time parameters may potentially eliminate the vibrations.                                                                                                        |  |  |  |  |

| Parameter | Name             | Value<br>Range | Default | Unit | Options                                                   | Modifica-<br>tion Mode | Effective<br>Time |
|-----------|------------------|----------------|---------|------|-----------------------------------------------------------|------------------------|-------------------|
| C00.04    | Auto-tuning mode | 0 to 2         | 1       | -    | 0: Manual mode<br>1: Standard mode<br>2: Positioning mode | During operation       | Immediately       |

| Parameter | Name                                            | Value<br>Range | Default | Unit     | Options                                                                                                             | Modifica-<br>tion Mode | Effective<br>Time |
|-----------|-------------------------------------------------|----------------|---------|----------|---------------------------------------------------------------------------------------------------------------------|------------------------|-------------------|
| C00.05    | Stiffness level                                 | 1 to 31        | 12      | -        | Increasing the stiffness<br>level improves the<br>responsiveness, but a<br>too high level can cause<br>oscillation. | During operation       | Immediately       |
| C01.00    | 1st position loop gain                          | 0 to 20000     | 400     | 0.1rad/s | Increasing the<br>setpoint improves the<br>responsiveness and<br>shortens the positioning<br>time.                  | During operation       | Immediately       |
| C01.01    | 1st speed loop gain                             | 1 to 20000     | 250     | 0.1Hz    | Increasing the<br>setpoint improves<br>the speed follow-up<br>responsiveness of the<br>servo system.                | During operation       | Immediately       |
| C01.02    | 1st speed loop integral<br>time parameter       | 1 to 51200     | 3184    | 0.01ms   | Reducing the setpoint<br>can enhance the integral<br>effect and shorten the<br>positioning time.                    | During operation       | Immediately       |
| C01.03    | 1st torque reference<br>filter cutoff frequency | 5 to 16000     | 200     | Hz       | Reducing the setpoint<br>improves the filtering<br>effect but increases the<br>delay.                               | During operation       | Immediately       |

### 7.4 Pseudo derivative feedback and feedforward control

In position and speed modes, the pseudo derivative feedback and feedforward control can be used for the speed loop. When C01.1B is 100%, the speed loop uses proportional-integral (PI) control; when C01.1B is 0%, the speed loop switches to pure integral-proportional (IP) control.

In PI control mode, the speed response is faster, but the overshoot increases. In IP control mode, the speed response decreases correspondingly, but the follow-up is better and the overshoot decreases.

| Parameter | Name                     | Value<br>Range | Default | Unit | Options                                                    | Modifica-<br>tion Mode | Effective<br>Time |
|-----------|--------------------------|----------------|---------|------|------------------------------------------------------------|------------------------|-------------------|
| C01.1B    | PDFF control coefficient | 0 to 1000      | 1000    | 0.1% | Decreasing the value<br>can reduce the speed<br>overshoot. | During operation       | Immediately       |

### 7.5 Gain Switchover

In position and speed modes, gain switchover can improve the system responsiveness and reference followup and reduce the positioning time.

High gain parameters correspond to the second group of loop gains, while low gain parameters correspond to the first group of loop gains. When the switchover conditions are met, the loop gain will switch between the first and second groups of gains.

| Parameter | Name                                            | Value<br>Range | Default | Unit     | Options                                                                                              | Modifica-<br>tion Mode | Effective<br>Time |
|-----------|-------------------------------------------------|----------------|---------|----------|------------------------------------------------------------------------------------------------------|------------------------|-------------------|
| C01.38    | Gain switchover mode                            | 0 to 8         | 0       | -        | Set the gain switchover mode.                                                                        | During operation       | Immediately       |
| C01.39    | Gain switchover time                            | 10 to 10000    | 50      | 0.1ms    | Set the gain switchover time.                                                                        | During operation       | Immediately       |
| C01.3A    | Gain switchover<br>threshold                    | 0 to 65535     | 10      | -        | Set the gain switchover threshold.                                                                   | During operation       | Immediately       |
| C01.3B    | Gain switchover loop<br>width                   | 0 to 65535     | 10      | -        | Set the gain switchover loop width.                                                                  | During operation       | Immediately       |
| C01.00    | 1st position loop gain                          | 0 to 20000     | 400     | 0.1rad/s | Increasing the<br>setpoint improves the<br>responsiveness and<br>shortens the positioning<br>time.   | During operation       | Immediately       |
| C01.01    | 1st speed loop gain                             | 1 to 20000     | 250     | 0.1Hz    | Increasing the<br>setpoint improves<br>the speed follow-up<br>responsiveness of the<br>servo system. | During operation       | Immediately       |
| C01.02    | 1st speed loop integral<br>time parameter       | 1 to 51200     | 3184    | 0.01ms   | Reducing the setpoint<br>can enhance the integral<br>effect and shorten the<br>positioning time.     | During operation       | Immediately       |
| C01.03    | 1st torque reference<br>filter cutoff frequency | 5 to 16000     | 200     | Hz       | Reducing the setpoint<br>improves the filtering<br>effect but increases the<br>delay.                | During operation       | Immediately       |

| Parameter | Name                                            | Value<br>Range | Default | Unit     | Options                                                                                              | Modifica-<br>tion Mode | Effective<br>Time |
|-----------|-------------------------------------------------|----------------|---------|----------|------------------------------------------------------------------------------------------------------|------------------------|-------------------|
| C01.08    | 2nd position loop gain                          | 0 to 20000     | 560     | 0.1rad/s | Increasing the<br>setpoint improves the<br>responsiveness and<br>shortens the positioning<br>time.   | During operation       | Immediately       |
| C01.09    | 2nd speed loop gain                             | 1 to 20000     | 350     | 0.1Hz    | Increasing the<br>setpoint improves<br>the speed follow-up<br>responsiveness of the<br>servo system. | During operation       | Immediately       |
| C01.0A    | 2nd speed loop integral<br>time parameter       | 1 to 51200     | 2274    | 0.01ms   | Reducing the setpoint<br>can enhance the integral<br>effect and shorten the<br>positioning time.     | During operation       | Immediately       |
| C01.0B    | 2nd torque reference<br>filter cutoff frequency | 5 to 16000     | 280     | Hz       | Reducing the setpoint<br>improves the filtering<br>effect but increases the<br>delay.                | During operation       | Immediately       |

### Mode description:

| C01.38 | Switchover Mode             | Switchover<br>Time | Switchover<br>Threshold | Switchover<br>Loop Width | Threshold and<br>Loop Width Unit |
|--------|-----------------------------|--------------------|-------------------------|--------------------------|----------------------------------|
| 0      | Fixed to the 1st gain set   | Inactive           | Inactive                | Inactive                 | -                                |
| 1      | DI switchover               | Active             | Active                  | Active                   | -                                |
| 2      | DI P-PI switchover          | Active             | Active                  | Active                   | -                                |
| 3      | Torque reference            | Active             | Active                  | Active                   | 0.1%                             |
| 4      | Speed reference             | Active             | Active                  | Active                   | rpm                              |
| 5      | Speed feedback              | Active             | Active                  | Active                   | rpm                              |
| 6      | Speed reference change rate | Active             | Active                  | Active                   | rpm/ms                           |
| 7      | Position deviation          | Active             | Active                  | Active                   | р                                |
| 8      | Position reference          | Active             | Active                  | Active                   | р                                |

### 7.6 Speed Feedforward

Speed feedforward can be applied to position control mode to improve the speed reference responsiveness, shorten the positioning time, and reduce the position deviation at fixed speed.

### **Related parameters:**

| Parameter | Name                                         | Value<br>Range | Default | Unit | Options                                                                                                              | Modifica-<br>tion Mode | Effective<br>Time |
|-----------|----------------------------------------------|----------------|---------|------|----------------------------------------------------------------------------------------------------------------------|------------------------|-------------------|
| C01.13    | Speed feedforward source                     | 0 to 5         | 0       | -    | 0: No feedforward<br>1: Internal reference<br>2: Model tracking<br>5: Communication                                  | At stop                | Immediately       |
| C01.14    | Speed feedforward percentage                 | 0 to 2000      | 0       | 0.1% | Increasing the speed feedforward improves the responsiveness.                                                        | During operation       | Immediately       |
| C01.15    | Speed feedforward<br>filter cutoff frequency | 5 to 16000     | 318     | Hz   | Decreasing the cutoff<br>frequency improves<br>the feedforward<br>smoothness but<br>increases the response<br>delay. | During<br>operation    | Immediately       |

### 7.7 Torque Feedforward

Torque feedforward can be applied only to the position and speed modes.

In position control mode, torque feedforward can improve torque reference responsiveness and reduce the speed deviation during operation at a constant speed. In speed control mode, torque feedforward can improve torque reference responsiveness and reduce the speed deviation during acceleration and deceleration.

A too high setpoint of torque feedforward may cause overshoot.

| Parameter | Name                          | Value<br>Range | Default | Unit | Options                                                                             | Modifica-<br>tion Mode | Effective<br>Time |
|-----------|-------------------------------|----------------|---------|------|-------------------------------------------------------------------------------------|------------------------|-------------------|
| C01.16    | Torque feedforward<br>source  | 0 to 5         | 0       | -    | 0: No feedforward<br>1: Internal reference<br>2: Model tracking<br>5: Communication | At stop                | Immediately       |
| C01.17    | Torque feedforward percentage | 0 to 2000      | 0       | 0.1% | Increasing the torque feedforward improves the responsiveness.                      | During operation       | Immediately       |

| Parameter | Name                                       | Value<br>Range | Default | Unit | Options                                                                                                              | Modifica-<br>tion Mode | Effective<br>Time |
|-----------|--------------------------------------------|----------------|---------|------|----------------------------------------------------------------------------------------------------------------------|------------------------|-------------------|
| C01.18    | Torque feedforward filter cutoff frequency | 5 to 16000     | 318     | Hz   | Decreasing the cutoff<br>frequency improves<br>the feedforward<br>smoothness but<br>increases the response<br>delay. | During operation       | Immediately       |

### 7.8 Position Reference Filter

The position reference filter filters the position references (encoder unit) divided or multiplied by the electronic gear ratio to smoothen motor operation and reduce the shock on the machine.

The position reference filter includes the low-pass and overlapping average filters.

### **Related parameters:**

| Parameter | Name                                                                | Value<br>Range | Default | Unit  | Options                                                                                     | Modifica-<br>tion Mode | Effective<br>Time |
|-----------|---------------------------------------------------------------------|----------------|---------|-------|---------------------------------------------------------------------------------------------|------------------------|-------------------|
| C01.20    | Position reference<br>overlapping average<br>filter time constant A | 0 to 1280      | 0       | 0.1ms | Increasing the setpoint<br>improves the reference<br>smoothness but<br>increases the delay. | At stop                | Immediately       |
| C01.21    | Position reference<br>overlapping average<br>filter time constant B | 0 to 1280      | 0       | 0.1ms | Increasing the setpoint<br>improves the reference<br>smoothness but<br>increases the delay. | At stop                | Immediately       |
| C01.22    | Position reference<br>low-pass filter time<br>constant A            | 0 to 65535     | 0       | 0.1ms | Increasing the setpoint<br>improves the reference<br>smoothness but<br>increases the delay. | At stop                | Immediately       |
| C01.23    | Position reference<br>low-pass filter time<br>constant B            | 0 to 65535     | 0       | 0.1ms | Increasing the setpoint<br>improves the reference<br>smoothness but<br>increases the delay. | At stop                | Immediately       |

### 7.9 Model Tracking Control

Model tracking control can improve the responsiveness and shorten the positioning time.

This function is only available in the position control mode.

### **Related parameters:**

| Parameter | Name                                          | Value<br>Range | Default | Unit     | Options                                                                                          | Modifica-<br>tion Mode | Effective<br>Time |
|-----------|-----------------------------------------------|----------------|---------|----------|--------------------------------------------------------------------------------------------------|------------------------|-------------------|
| C02.00    | Model tracking control                        | 0 to 1         | 0       | -        | 0: Disabled<br>1: Enabled                                                                        | At stop                | Immediately       |
| C02.01    | Model tracking control gain                   | 10 to 20000    | 500     | 0.1rad/s | Increasing the setpoint improves the position tracking.                                          | During operation       | Immediately       |
| C02.02    | Model tracking inertia correction coefficient | 10 to 8000     | 1000    | 0.1%     | When the inertia ratio<br>setpoint is not accurate,<br>this value can be used<br>for correction. | During operation       | Immediately       |

### 7.10 Speed Feedback Filter

When the encoder bit number is low or the noise contribution is large, the speed feedback fluctuation or burr calculated by the drive is large. You can set the speed feedback low-pass filter or overlapping average filter to reduce the speed feedback fluctuation. However, a too high setpoint will increase the delay in the servo system, which could potentially cause system oscillation.

| Parameter | Name                                                          | Value<br>Range | Default | Unit | Options                                                                                                                                                                          | Modifica-<br>tion Mode | Effective<br>Time |
|-----------|---------------------------------------------------------------|----------------|---------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------|
| C01.10    | Speed feedback filter                                         | 0 to 4         | 0       | -    | 0: Internal setting<br>1: Low-pass filter<br>2: Overlapping average filter<br>3: Speed observer<br>4: No filter                                                                  | At stop                | Immediately       |
| C01.11    | Cutoff frequency of<br>speed feedback low-<br>pass filter     | 10 to 16000    | 8000    | Hz   | Set the cutoff frequency of the low-pass filter.                                                                                                                                 | During operation       | Immediately       |
| C01.12    | Speed feedback<br>overlapping average<br>filter time constant | 0 to 6         | 0       | -    | 0: No filter<br>1: Two times filter<br>2: Four times filter<br>3: Eight times filter<br>4: Sixteen times filter<br>5: Thirty-second times filter<br>6: Sixty-fourth times filter | During<br>operation    | Immediately       |

### 7.11 Speed Observer

The speed observer can filter high-frequency signals for speed feedback, reduce the impact of encoder position feedback noise on the servo system, and improves the stiffness level of the servo system to some extent.

To enable the speed observer function, set C01.10 to 3.

### **Related parameters:**

| Parameter | Name                                                 | Value<br>Range | Default | Unit  | Options                                                                                                                                                     | Modifica-<br>tion Mode | Effective<br>Time |
|-----------|------------------------------------------------------|----------------|---------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------|
| C01.10    | Speed feedback filter                                | 0 to 4         | 0       | -     | <ul> <li>0: Internal setting</li> <li>1: Low-pass filter</li> <li>2: Overlapping average filter</li> <li>3: Speed observer</li> <li>4: No filter</li> </ul> | At stop                | Immediately       |
| C02.30    | Speed observer gain                                  | 0 to 40000     | 0       | 0.1Hz | Increasing the<br>setpoint improves the<br>observation speed<br>responsiveness, but<br>a too large value can<br>cause oscillation.                          | During<br>operation    | Immediately       |
| C02.31    | Speed observer inertia correction                    | 10 to 8000     | 1000    | 0.1%  | When the inertia ratio<br>setpoint is not accurate,<br>this value can be used for<br>correction.                                                            | During operation       | Immediately       |
| C02.32    | Speed observer speed<br>feedback cutoff<br>frequency | 0 to 16000     | 0       | Hz    | Set the cutoff frequency<br>of the speed observer<br>low-pass filter.                                                                                       | During operation       | Immediately       |

### 7.12 Disturbance Observer

The disturbance observer effectively observes the external disturbance. Disturbances within the frequency range can be observed and suppressed with different cutoff frequencies and compensation values.

### **Related parameters:**

| Parameter | Name                                                      | Value<br>Range | Default | Unit  | Options                                                                                                                                 | Modifica-<br>tion Mode | Effective<br>Time |
|-----------|-----------------------------------------------------------|----------------|---------|-------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------|
| C02.60    | Disturbance observer<br>gain                              | 0 to 40000     | 0       | 0.1Hz | Increasing the<br>value improves the<br>responsiveness to<br>disturbances, but a too<br>large value can cause<br>vibration more easily. | During<br>operation    | Immediately       |
| C02.61    | Disturbance observer<br>inertia correction<br>coefficient | 1 to 10000     | 1000    | 0.1%  | When the inertia ratio<br>setpoint is not accurate,<br>this value can be used<br>for correction.                                        | During operation       | Immediately       |
| C02.62    | Disturbance observer<br>low-pass cutoff<br>frequency      | 0 to 16000     | 0       | Hz    | Set the cutoff frequency<br>of the speed observer<br>low-pass filter.                                                                   | During operation       | Immediately       |
| C02.63    | Disturbance observer<br>compensation torque<br>percentage | 0 to 2000      | 0       | 0.1%  | Set the percentage<br>for observation<br>compensation.                                                                                  | During operation       | Immediately       |

### 7.13 Friction Compensation

The friction compensation function is used to compensate for changes in viscous friction and variations in fixed loads.

| Parameter | Name                                                    | Value<br>Range | Default | Unit   | Options                                                                                                                                  | Modifica-<br>tion Mode | Effective<br>Time |
|-----------|---------------------------------------------------------|----------------|---------|--------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------|
| C02.68    | Friction compensation<br>switch and relevant<br>setting | 0 to 0xFF      | 0       | -      | Bit 0:<br>0: Disabled<br>1: Enabled<br>Bit 4:<br>0: Speed threshold from<br>speed reference<br>1: Speed threshold from<br>speed feedback | *                      | Immediately       |
| C02.69    | Friction compensation<br>speed threshold                | 0 to 5000      | 20      | 0.1rpm | Set it to the coulomb friction compensation speed threshold.                                                                             | During operation       | Immediately       |

| Parameter | Name                                                    | Value<br>Range | Default | Unit   | Options                                                                                                       | Modifica-<br>tion Mode | Effective<br>Time |
|-----------|---------------------------------------------------------|----------------|---------|--------|---------------------------------------------------------------------------------------------------------------|------------------------|-------------------|
| C02.6A    | Static friction compensation                            | 0 to 2000      | 0       | 0.1%   | Set it to the static<br>friction compensation<br>value.                                                       | During operation       | Immediately       |
| C02.6B    | Forward friction<br>compensation of<br>coulomb friction | 0 to 2000      | 0       | 0.1%   | Set it to the friction<br>force of compensation<br>for the position<br>reference in the forward<br>direction. | During operation       | Immediately       |
| C02.6C    | Reverse friction<br>compensation of<br>coulomb friction | -2000 to 0     | 0       | 0.1%   | Set it to the friction<br>force of compensation<br>for the position<br>reference in the reverse<br>direction. | During operation       | Immediately       |
| C02.6D    | Viscous friction torque<br>for rated speed              | 0 to 2000      | 0       | 0.1%   | Set it to the viscous<br>friction torque for rated<br>speed.                                                  | During operation       | Immediately       |
| C02.6E    | Friction compensation filter time                       | 0 to 65535     | 0       | 0.01ms | Determine the speed<br>after overcoming<br>resistance friction.                                               | During operation       | Immediately       |
| C02.6F    | Friction compensation<br>threshold for zero speed       | 0 to 1000      | 10      | 0.1rpm | Set it to the friction<br>compensation threshold<br>for the zero speed.                                       | During operation       | Immediately       |

### 7.14 Vibration Suppression

The notch can suppress mechanical resonance by reducing the gain at a specific frequency. After the notch is correctly set, vibration can be effectively suppressed, and it may be possible to continue increasing the servo gain. The notch principle is shown in the figure below.

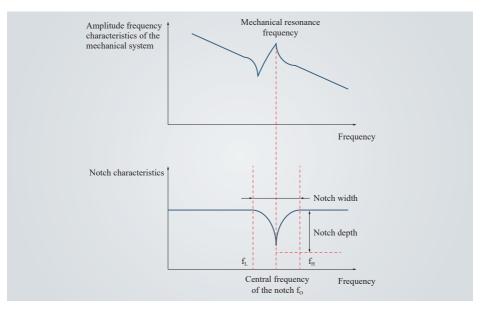


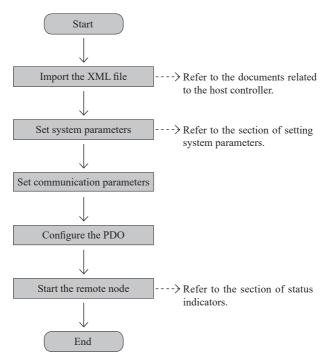

Figure 7-1 Notch suppression

The servo drive has a total of five notches, and each is defined by three parameters: notch frequency, width level, and depth level. The 1st and 2nd notches can be set manually or configured as adaptive notches (C01.30 = 1 or 2). In this case, the parameters are automatically set by the drive, while the other three notches can be set manually.

Steps to use adaptive notches:

- ① Set C01.30 (adaptive notch mode) to 1 or 2 based on the number of resonance points.
- ② When resonance occurs, set C01.30 to 1 to enable one adaptive notch. If resonance occurs again after gain tuning, set C01.30 to 2 to enable two adaptive notches. Parameters of the 1st and 2nd notches are updated automatically during servo operation.
- ③ If resonance is suppressed, the adaptive notch functions well. If resonance persists, use the backend tool to observe waveforms of related variables and use the other three notches to suppress resonance.

| Parameter | Name                | Value<br>Range | Default | Unit | Options                                                                                                          | Modifica-<br>tion Mode | Effective<br>Time |
|-----------|---------------------|----------------|---------|------|------------------------------------------------------------------------------------------------------------------|------------------------|-------------------|
| C01.30    | Adaptive notch mode | 0 to 4         | 0       | -    | 0: Disabled<br>1: 1st notch<br>2: 2nd notch<br>3: Notch parameter reset<br>4: Resonance frequency<br>tested only | During operation       | Immediately       |


| Parameter | Name                            | Value<br>Range | Default | Unit  | Options                                     | Modifica-<br>tion Mode | Effective<br>Time |
|-----------|---------------------------------|----------------|---------|-------|---------------------------------------------|------------------------|-------------------|
| C01.31    | Adaptive notch test<br>times    | 0 to 65535     | 0       | Times | -                                           | During operation       | Immediately       |
| C01.40    | Frequency of the 1st<br>notch   | 10 to 8000     | 8000    | Hz    | Set it to the frequency of the 1st notch.   | During operation       | Immediately       |
| C01.41    | Width level of the 1st<br>notch | 0 to 4000      | 0       | 0.1%  | Set it to the width level of the 1st notch. | During operation       | Immediately       |
| C01.42    | Depth level of the 1st<br>notch | 10 to 1000     | 1000    | 0.1%  | Set it to the depth level of the 1st notch. | During operation       | Immediately       |
| C01.43    | Frequency of the 2nd notch      | 10 to 8000     | 8000    | Hz    | Set it to the frequency of the 2nd notch.   | During operation       | Immediately       |
| C01.44    | Width level of the 2nd notch    | 0 to 4000      | 0       | 0.1%  | Set it to the width level of the 2nd notch. | During operation       | Immediately       |
| C01.45    | Depth level of the 2nd notch    | 10 to 1000     | 1000    | 0.1%  | Set it to the depth level of the 2nd notch. | During operation       | Immediately       |
| C01.46    | Frequency of the 3rd notch      | 10 to 8000     | 8000    | Hz    | Set it to the frequency of the 3rd notch.   | During operation       | Immediately       |
| C01.47    | Width level of the 3rd notch    | 0 to 4000      | 0       | 0.1%  | Set it to the width level of the 3rd notch. | During operation       | Immediately       |
| C01.48    | Depth level of the 3rd notch    | 10 to 1000     | 1000    | 0.1%  | Set it to the depth level of the 3rd notch. | During operation       | Immediately       |
| C01.49    | Frequency of the 4th notch      | 10 to 8000     | 8000    | Hz    | Set it to the frequency of the 4th notch.   | During operation       | Immediately       |
| C01.4A    | Width level of the 4th notch    | 0 to 4000      | 0       | 0.1%  | Set it to the width level of the 4th notch. | During operation       | Immediately       |
| C01.4B    | Depth level of the 4th notch    | 10 to 1000     | 1000    | 0.1%  | Set it to the depth level of the 4th notch. | During operation       | Immediately       |
| C01.4C    | Frequency of the 5th notch      | 10 to 8000     | 8000    | Hz    | Set it to the frequency of the 5th notch.   | During operation       | Immediately       |
| C01.4D    | Width level of the 5th notch    | 0 to 4000      | 0       | 0.1%  | Set it to the width level of the 5th notch. | During operation       | Immediately       |
| C01.4E    | Depth level of the 5th notch    | 10 to 1000     | 1000    | 0.1%  | Set it to the depth level of the 5th notch. | During operation       | Immediately       |

### **Chapter 8** Communication Description

### 8.1 Overview

### 8.1.1 EtherCAT Overview

EtherCAT is an easy-to-use, industrial Ethernet technology featuring the high-performance, low cost, and flexible topology. It can be used for ultra-high-speed I/O networks at the industrial field level, and uses the standard Ethernet physical layer, with transmission media being twisted pair or optical fiber (100Base-TX or 100Base-FX).



The EtherCAT system consists of a master and several slaves. The master only requires a regular network card, while a slave requires a dedicated slave control chip, such as ET1100, ET1200, and FPGA.

EtherCAT provides an end-to-end connection over one network, with protocol processing reaching directly to the I/O layer:

- No need for any underlying sub-bus
- No gateway delay
- A single system covering all devices, including the I/O, sensor, activator, drive, and display
- Transmission rate: 2 x 100 Mbit/s (high speed Ethernet, full duplex mode)
- Synchronism: 300 nodes between two devices, cable of 120 m, and synchronization jitter less than 1 µs
- Update time:

256 digital I/O: 11 µs

1000 digital I/O distributed over 100 nodes: 30  $\mu$ s = 0.03 ms

200 analog I/O (16-bit): 50 µs, sampling rate of 20 kHz

100 servo axes (each 8-byte IN+OUT): 100  $\mu$ s = 0.1 ms

12000 digital I/O: 350 µs

To support a wider variety of devices and application layers, EtherCAT provides the following application protocols:

- CANopen over EtherCAT (CoE) (CAN application protocol based on EtherCAT)
- SoE (Servo drive specification compliant with IEC 61800-7-204 standard)
- EoE (Ethernet implemented by EtherCAT)
- FoE (File reading implemented by EtherCAT)

Slave devices do not need to support all communication protocols. Instead, only the most suitable communication protocols need to be selected for their applications.

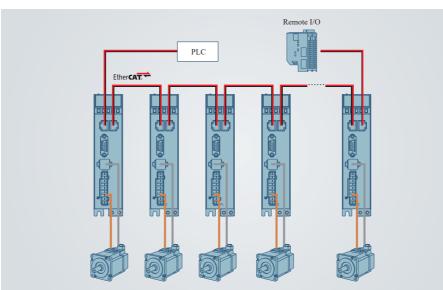



Figure 8-1 EtherCAT networking

### NOTICE

• EtherCAT is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.

### 8.1.2 EtherCAT communication technical specifications

|                                         | Item                                                     | Specifications                                                                                                                         |
|-----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
|                                         | Communication protocol                                   | EtherCAT protocol                                                                                                                      |
|                                         | Service supported                                        | CoE (Process Data Object (PDO) and Service<br>Data Object (SDO))                                                                       |
|                                         | Synchronization mode                                     | Distributed clock (DC)                                                                                                                 |
|                                         | Physical layer                                           | 100BASE-TX                                                                                                                             |
|                                         | Baud Rate                                                | 100 Mbit/s (100Base-TX)                                                                                                                |
|                                         | Duplex mode                                              | Full duplex                                                                                                                            |
|                                         | Topology                                                 | Linear                                                                                                                                 |
|                                         | Transmission medium                                      | Cat5 shielded cables or Cat6 and above cables with electrical performance specifications                                               |
| Basic performance of<br>EtherCAT slaves | Transmission distance                                    | Less than 100 m between two nodes (with proper environment and cables)                                                                 |
|                                         | Number of slaves                                         | Up to 65535 supported by protocol, not exceeding 100 in actual use                                                                     |
|                                         | EtherCAT frame length                                    | 44 bytes to 1,498 bytes                                                                                                                |
|                                         | Process data                                             | Up to 1486 bytes per Ethernet frame                                                                                                    |
|                                         | Synchronization jitter of two slaves                     | <1us                                                                                                                                   |
|                                         | Update time                                              | About 30 μs for 1000 digital input/output<br>About 100 μs for 100 servo axes<br>Update time varying with the different interface types |
|                                         | Communication bit error ratio                            | 10 <sup>-10</sup> Ethernet standard                                                                                                    |
|                                         | Number of FMMU units                                     | 8                                                                                                                                      |
| EtherCAT configuration                  | Number of storage<br>synchronization management<br>units | 8                                                                                                                                      |
| units                                   | Process data RAM                                         | 8 KB                                                                                                                                   |
|                                         | DC                                                       | 64 bits                                                                                                                                |
|                                         | E2PROM capacity                                          | 32 kbit                                                                                                                                |

|                        | Item                  | Specifications                                       |
|------------------------|-----------------------|------------------------------------------------------|
| Communication protocol |                       | IEC 61158 Type 12, IEC 61800-7 CiA 402 Drive Profile |
|                        | SDO                   | SDO request and response                             |
|                        | PDO                   | Variable PDO mapping                                 |
|                        |                       | PP mode                                              |
|                        | CiA402                | PV mode                                              |
| Application Layer      |                       | PT mode                                              |
|                        |                       | HM mode                                              |
|                        |                       | CSP mode                                             |
|                        |                       | CSV mode                                             |
|                        |                       | CST mode                                             |
|                        | Transmission protocol | 100BASE-TX (IEEE802.3)                               |
| Physical layer         | Max. distance         | 100M                                                 |
|                        | Interface             | RJ45*2 (IN, OUT)                                     |

### 8.1.3 EtherCAT communication specification

### 8.2 Communication Transmission Modes

### 8.2.1 EtherCAT Communication Structure

Various application layer protocols can be used in EtherCAT communication. The JSS-AS715N series servo drive adopts the IEC 61800-7 (CiA 402)-CANopen motion control sub-protocol.

The following figure shows the EtherCAT communication structure based on the CANopen application layer.

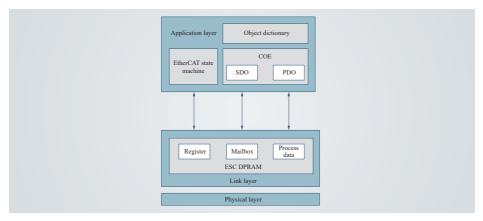



Figure 8-2 EtherCAT communication structure based on the CANopen application layer

As shown in the figure, the object dictionary of the application layer contains the following: Communication parameters, application data, and PDO mapping data PDOs contain real-time data during the operation of the servo drive, and are accessed for reading and writing periodically. SDO mailbox communication accesses and modifies some communication parameter objects and PDOs in a non-periodic manner.

### 8.2.2 Communication State Machine

### CiA402 control introduction

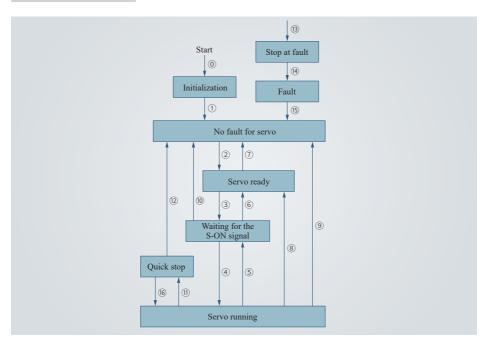



Figure 8-3 CiA402 state machine switchover

The JSS715N series servo drive should be operated according to the process specified by the standard CiA402 protocol, so that the servo drive can operate in the specified state. The following table lists each status.

| State              | Description                                                                                                                                                                            |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Initialization     | <ul> <li>Initialization of the servo drive and internal self-inspection are done.</li> <li>Parameters of the servo drive cannot be set. Drive functions cannot be executed.</li> </ul> |
| No fault for servo | <ul><li>No fault exists in the servo drive or the fault has been cleared.</li><li>Parameters of the servo drive can be set.</li></ul>                                                  |

| State                       | Description                                                                                                                                                                                                                                                                            |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Servo ready                 | <ul><li>The servo drive is ready to run.</li><li>Parameters of the servo drive can be set.</li></ul>                                                                                                                                                                                   |
| Waiting for the S-ON signal | <ul><li>The servo drive is waiting for the S-ON signal.</li><li>Parameters of the servo drive can be set.</li></ul>                                                                                                                                                                    |
| Servo running               | <ul> <li>The servo drive is running properly and a certain operation mode has been enabled. The motor is energized and starts rotating when the speed reference value inputted is not 0.</li> <li>Only parameters whose "Setting Condition" is "During running" can be set.</li> </ul> |
| Quick stop                  | <ul><li>Quick stop is activated and the servo drive is in the process of quick stop.</li><li>Only parameters whose "Setting Condition" is "During running" can be set.</li></ul>                                                                                                       |
| Stop at fault               | <ul><li>A fault occurs and the servo drive is in the process of stop.</li><li>Only parameters whose "Setting Condition" is "During running" can be set.</li></ul>                                                                                                                      |
| Fault                       | • The stop process is done and all the drive functions are disabled.<br>Parameters can be modified for the troubleshooting purpose.                                                                                                                                                    |

### EtherCAT status switchover

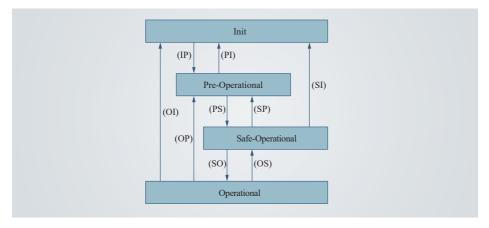



Figure 8-4 EtherCAT state machine

EtherCAT devices must support four statuses to coordinate the status relationship between the master and slave applications during initialization and operation.

- Init: Initialization, short as I
- Pre-Operational: Pre-operational, short as P
- Safe-Operational: Safe-operational, short as S
- Operational: Operational, short as O

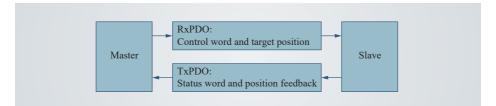
When the initialized state is switched to the operational state, it must follow the sequence "Initialized  $\rightarrow$  Preoperational  $\rightarrow$  Safe-operational  $\rightarrow$  Operational", and running-through is not allowed. However, when the state is returned from the operational state, running-through is allowed.

| State                   | SDO | RPDO | TPDO | Description                                                                                                                                                                                                                                            |
|-------------------------|-----|------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Initialization (I)      | No  | No   | No   | <ul> <li>Communication is initialized.</li> <li>There is no communication at the application layer, and the master can only read data from and write data to the ESC register.</li> </ul>                                                              |
| IP                      | No  | No   | No   | <ul> <li>The master configures the slave addresses.</li> <li>The mailbox channel is configured.</li> <li>The DC is configured.</li> <li>The pre-operational state is requested.</li> </ul>                                                             |
| Pre-operational (P)     | Yes | No   | No   | • There is mailbox data communication (SDO) at the application layer.                                                                                                                                                                                  |
| PS                      | Yes | No   | No   | <ul> <li>The master uses SDOs to initialize process data mapping.</li> <li>The master configures the SM channel used for process data communication.</li> <li>The master configures FMMU.</li> <li>The safe-operational state is requested.</li> </ul> |
| Safe-operational<br>(S) | Yes | No   | Yes  | <ul> <li>Both SDOs and Transmission PDOs (TPDOs)<br/>are available.</li> <li>The DC mode is available.</li> </ul>                                                                                                                                      |
| SO                      | Yes | No   | Yes  | <ul><li>The master sends valid output data.</li><li>The operational state is requested.</li></ul>                                                                                                                                                      |
| Operational (O)         | Yes | Yes  | Yes  | <ul><li> It is in the normal operation state.</li><li> All the input and output data is valid.</li><li> Mailbox communication is available.</li></ul>                                                                                                  |

The following table describes the status switchover and initialization process.

### 8.2.3 DC

The DC allows all EtherCAT devices to use the same system time, thereby controlling the synchronous execution of tasks on each device. Slave devices can generate sync signals based on the synchronized system time. The JSS715N series servo drive only supports the DC sync mode. The synchronization cycle is controlled by SYNC0. The period range varies with different motion modes.


### NOTICE

- The SYNC signal can be used for synchronization of all slaves and can achieve an error of less than 1 µs. Before the SYNC signal starts, the master needs to synchronize all slaves to the same clock. In the operational state, it also needs to continuously synchronize the slaves to the same clock to prevent the difference in the crystal oscillator from causing a clock offset. This is generally manifested as synchronizing the 0x910 register of the ESC.
- The SYNC starting time is the time of the ESC 0x990 register minus the 0x920 time. Enable the DC mode (0x981 = 0x03) before the 0x910 reaches the starting time. If the SYNC starting time setting is incorrect, the ESC 0x134 status register will report a fault code of 0x2D.

### 8.3 Communication Data Frame Structure

### 8.3.1 Process Data

EtherCAT real-time data is transmitted through PDOs. According to the data transmission direction, PDOs can be divided into Reception PDOs (RPDOs) and TPDOs. RPDOs send master data to slaves, and TPDOs feed back slave data to the master.



The JSS715N series servo drive supports user-defined PDO lists and PDO mapping objects.

### PDO mapping

PDO mapping is used to establish the mappings between the object dictionary and PDOs. 1600h to 17FFh are RPDOs, and 1A00h to 1BFFh are TPDOs. The JSS715N series servo drive provides six RPDOs and five TPDOs, which are described in the following table.

| RPDO | 1600h            | Variable mapping |
|------|------------------|------------------|
| (6)  | 1701h to 1705h   | Fixed mapping    |
| TPDO | 1A00h            | Variable mapping |
| (5)  | 1B01h to 0x1B04h | Fixed mapping    |

### Fixed PDO mapping

The JSS715N series servo drive provides five fixed RPDOs and four fixed TPDOs. The following table lists some typical uses of RPDOs and TPDOs.

| Available Servo Mode | PP CSP                                                                                                                                                                                                                                                                                                        |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | Mapping object (four 12-byte objects)                                                                                                                                                                                                                                                                         |
| 1701h<br>(Output)    | 6040h (control word)<br>607Ah (target position)<br>60B8h (touch probe function)<br>60FEh sub-index 1 (forced physical DO)                                                                                                                                                                                     |
| 1B01h<br>(Input)     | Mapping object (nine 28-byte objects)<br>603Fh (fault code)<br>6041h (status word)<br>6064h (position actual value)<br>6077h (torque feedback)<br>60F4h (position deviation)<br>60B9h (touch probe status)<br>60BAh (touch probe 1 positive edge)<br>60BCh (touch probe 2 positive edge)<br>60FDh (DI status) |

| Available Servo Mode | PP PV PT CSP CSV CST                                                                                                                                                                                                                                                                                                               |  |  |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                      | Mapping object (seven 19-byte objects)                                                                                                                                                                                                                                                                                             |  |  |
| 1702h<br>(Output)    | 6040h (control word)<br>607Ah (target position)<br>60FFh (target velocity)<br>6071h (target torque)<br>6060h (mode selection)<br>60B8h (touch probe function)<br>607Fh (Max. speed)                                                                                                                                                |  |  |
|                      | Mapping object (nine 25-byte objects)                                                                                                                                                                                                                                                                                              |  |  |
| 1B02h<br>(Input)     | <ul> <li>603Fh (fault code)</li> <li>6041h (status word)</li> <li>6064h (position actual value)</li> <li>6077h (torque feedback)</li> <li>6061h (mode display)</li> <li>60B9h (touch probe status)</li> <li>60BAh (touch probe 1 positive edge)</li> <li>60BCh (touch probe 2 positive edge)</li> <li>60FDh (DI status)</li> </ul> |  |  |

| Available Servo Mode | PP PV CSP CSV                                                                                                                                                                                                                                                  |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | Mapping object (seven 17-byte objects)                                                                                                                                                                                                                         |
| 1703h<br>(Output)    | <ul> <li>6040h (control word)</li> <li>607Ah (target position)</li> <li>60FFh (target velocity)</li> <li>6060h (mode selection)</li> <li>60B8h (touch probe function)</li> <li>60E0h (positive torque limit)</li> <li>60E1h (negative torque limit)</li> </ul> |
| 1B03h<br>(Input)     | Mapping object (ten 29-byte objects)603Fh (fault code)6041h (status word)6064h (position actual value)6077h (torque feedback)60F4h (position deviation)6061h (mode display)60B9h (touch probe status)60BAh (touch probe 1 positive edge)                       |
|                      | 60BCh (touch probe 2 positive edge)<br>60FDh (DI status)                                                                                                                                                                                                       |

| Available Servo Mode | PP PV PT CSP CSV CST                  |  |
|----------------------|---------------------------------------|--|
|                      | Mapping object (nine 23-byte objects) |  |
|                      | 6040h (control word)                  |  |
|                      | 607Ah (target position)               |  |
|                      | 60FFh (target velocity)               |  |
| 1704h                | 6071h (target torque)                 |  |
| (Output)             | 6060h (mode selection)                |  |
|                      | 60B8h (touch probe function)          |  |
|                      | 607Fh (Max. speed)                    |  |
|                      | 60E0h (positive torque limit)         |  |
|                      | 60E1h (negative torque limit)         |  |
|                      | Mapping object (nine 25-byte objects) |  |
|                      | 603Fh (fault code)                    |  |
|                      | 6041h (status word)                   |  |
|                      | 6064h (position actual value)         |  |
| 1B02h                | 6077h (torque feedback)               |  |
| (Input)              | 6061h (mode display)                  |  |
|                      | 60B9h (touch probe status)            |  |
|                      | 60BAh (touch probe 1 positive edge)   |  |
|                      | 60BCh (touch probe 2 positive edge)   |  |
|                      | 60FDh (DI status)                     |  |

I

| Available Servo Mode | PP PV CSP CSV                                                                                                                                                                                                                                                                                     |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | Mapping object (eight 19-byte objects)                                                                                                                                                                                                                                                            |
| 1705h<br>(Output)    | 6040h (control word)<br>607Ah (target position)<br>60FFh (target velocity)<br>6060h (mode selection)<br>60B8h (touch probe function)<br>60E0h (positive torque limit)<br>60E1h (negative torque limit)<br>60B2h (torque offset)                                                                   |
|                      | Mapping object (ten 29-byte objects)                                                                                                                                                                                                                                                              |
| 1B04h<br>(Input)     | 603Fh (fault code)<br>6041h (status word)<br>6064h (position actual value)<br>6077h (torque feedback)<br>6061h (mode display)<br>60F4h (position deviation)<br>60B9h (touch probe status)<br>60BAh (touch probe 1 positive edge)<br>60BCh (touch probe 2 positive edge)<br>606Ch (speed feedback) |

### Variable PDO mapping

The JSS715N series servo drive provides one variable RPDO and one variable TPDO.

| Variable PDO | Index | Max. Number<br>of Mappings | Max. Number<br>of Bytes | Default Mapping Object                                                                                                                                                                                      |
|--------------|-------|----------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RPDO1        | 1600h | 10                         | 40                      | 6040h (control word)<br>607Ah (target position)<br>60B8h (touch probe function)                                                                                                                             |
| TPDO1        | 1A00h | 10                         | 40                      | 603Fh (fault code)<br>6041h (status word)<br>6064h (position actual value)<br>60BCh (touch probe 2 positive edge)<br>60B9h (touch probe status)<br>60BAh (touch probe 1 positive edge)<br>60FDh (DI status) |

### Sync manager PDO assignment setting

In EtherCAT periodic data communication, process data can contain multiple PDOs. the CoE protocol uses

data objects 0x1C10 to 0x1C2F to define the PDO mapping object list of the corresponding sync manager (SM) channel. Multiple PDOs can be mapped in different sub-indexes. The JSS715N series servo drive supports one RPDO assignment and one TPDO assignment, which are listed in the following table.

| Index  | Sub-index | Item                                                                 |
|--------|-----------|----------------------------------------------------------------------|
| 0x1C12 | 01h       | Choose one from 0x1600 and 0x1701 to 0x1705 as the actual RPDO used. |
| 0x1C13 | 01h       | Choose one from 0x1A00 and 0x1B01 to 0x1B04 as the actual TPDO used. |

### PDO configuration

PDO mapping parameters contain pointers to PDO-related process data that PDOs need to send or receive, including the index, sub-index, and mapping object length. Among them, sub-index 0 records the number N of specific objects mapped by the PDO. Each PDO data length can be up to 4 x N bytes and can map one or more objects at the same time. Sub-indexes 1 to N are the mapping content. The following table defines the mapping parameter content.

| Bit     | 31 |       | 16 | 15 |           | 8 | 7 |             | 0 |
|---------|----|-------|----|----|-----------|---|---|-------------|---|
| Meaning |    | Index |    |    | Sub-index |   | C | bject lengt | h |

The index and sub-index together determine the position of the object in the object dictionary, and the object length specifies the specific number of bits for the object, represented in hexadecimal.

| Object length | Bits    |
|---------------|---------|
| 08h           | 8 bits  |
| 10h           | 16 bits |
| 20h           | 32 bits |

For example, the mapping parameter for the 16-bit control word 6040h-00 is 60400010h.

The PDO configuration of the JSS715N series servo drive follows the process:

① Configure PDO mapping groups. Write 0 to the 00h sub-index of 1C12h (or 1C13h).

- a. Clear the original mapping group: Writing "0" to the 00h sub-index of 1C12h (or 1C13h) can clear this PDO configuration group.
- b. Write the PDO mapping group: Write the mapping configuration group based on the site requirements. Pre-write the values of 1600h and 1701h to 1705h in 1C12h, and pre-write the values of 1A00h and 1B01h to 1B04h in 1C13h. (Note: Only 1600h and 1A00h are configurable mapping groups. Others are fixed mapping configurations.)
- c. Write the total number of the PDO mapping groups to sub-index 0 of the 1C12h (or 0x1C13h) object.
- 2 Configure PDO mapping objects. Write 0 to the 00h sub-index of 1600h (or 1A00h).

- a. Clear the original mapping object: Writing "0" to the 00h sub-index of 1600h (or 1A00h) can clear this PDO mapping configuration.
- b. Write the PDO mapping content: According to the object parameter definition in the XML file, write the content to the mapping parameter sub-indexes 1 to 10 respectively. Only the objects that support mapping can be configured as the PDO mapping content.
- c. Write the total number of PDO mapping objects, and write the number of mappings written in Step b to sub-index 0.

### **<u>CAUTION</u>**

- The PDO configuration can be set only when the EtherCAT communication state machine is in pre-operational (2 displayed on the panel). Otherwise, an error will be reported.
- PDO configuration parameters cannot be stored in E2PROM. Be sure to reconfigure the mapping object after each power-on. Otherwise, the mapping object will be the default parameter of the servo drive.

The following operations will return an SDO fault code:

- Modifying PDO parameters in a non-pre-operational state.
- Pre-writing values other than 1600h and 1701h to 1705h in 1C12, or pre-writing values other than 1A00h and 1B01h to 1B04h in 1C13.

### 8.3.2 Mailbox Data

The EtherCAT mailbox data SDO is used to transmit non-periodic data, such as the configuration of communication parameters and servo drive operation parameters. CoE service types of EtherCAT include the following:

- Emergency event information
- SDO request
- SDO response
- Transmit PDO (TxPDO)
- Receive PDO (RxPDO)
- Remote request to send TxPDOs
- Remote request to send RxPDOs
- SDO information

The JSS715N series servo drive supports SDO requests and responses.

# Chapter 9

## **DI/DO Function**

| Code    | Name                   | Function<br>Name         | Description                                                                                                          | Remarks                                                                                                                                                                                                            |  |  |
|---------|------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|         | Input signal functions |                          |                                                                                                                      |                                                                                                                                                                                                                    |  |  |
| FunIN.1 | S-ON                   | S-ON                     | Inactive: Servo motor disabled in<br>local mode<br>Active: Servo motor enabled in<br>local mode                      | The S-ON function is only active<br>in non-bus control mode.<br>The logic of the corresponding<br>terminal must be set to level<br>valid.                                                                          |  |  |
| FunIN.2 | ALM-RST                | Alarm reset<br>signal    | Active: Fault reset executed in local<br>mode<br>Inactive: Fault reset not executed in<br>local mode                 | The ALM-RST function is only<br>active in non-bus control mode.<br>It is recommended to set the logic<br>of the corresponding terminal to<br>level valid.                                                          |  |  |
| FunIN.6 | P-OT                   | PL switch                | Active: Forward drive disabled<br>Inactive: Forward drive enabled                                                    | When the mechanical movement<br>is beyond the movable range, the<br>overtravel prevention function<br>will be activated.<br>It is recommended to set the logic<br>of the corresponding terminal to<br>level valid. |  |  |
| FunIN.7 | N-OT                   | Negative limit<br>switch | Active: Reverse drive disabled<br>Inactive: Reverse drive enabled                                                    | When the mechanical movement<br>is beyond the movable range, the<br>overtravel prevention function<br>will be activated.<br>It is recommended to set the logic<br>of the corresponding terminal to<br>level valid. |  |  |
| FunIN.5 | HomeSwitch             | Home switch              | Inactive: Mechanical load beyond<br>the home switch range<br>Active: Mechanical load within the<br>home switch range | The logic of the corresponding<br>terminal must be set to level<br>valid.                                                                                                                                          |  |  |
| FunIN.4 | Emergency<br>Stop      | Emergency<br>stop        | Active: Position locked after stop at<br>zero speed<br>Inactive: Current operating state<br>unaffected               | It is recommended to set the logic<br>of the corresponding terminal to<br>level valid.                                                                                                                             |  |  |

| Code     | Name        | Function<br>Name | Description                                                            | Remarks                                                                          |
|----------|-------------|------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------|
|          |             |                  |                                                                        |                                                                                  |
| FunIN.30 | TouchProbel | Probe 1          | Inactive: Touch probe not triggered<br>Active: Touch probe triggerable | The touch probe logic is only<br>related to the touch probe<br>function (60B8h). |
| FunIN.31 | TouchProbe2 | Probe 2          | Inactive: Touch probe not triggered<br>Active: Touch probe triggerable | The touch probe logic is only<br>related to the touch probe<br>function (60B8h). |

| Code     | Name                        | Function Name            | Description                                                                                                                                                                | Remarks |  |
|----------|-----------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|
|          | Functions of output signals |                          |                                                                                                                                                                            |         |  |
| FunOUT.1 | S-RDY                       | Servo ready              | The servo drive is ready to receive the S-ON<br>signal.<br>Active: Servo ready<br>Inactive: Servo not ready                                                                | -       |  |
| FunOUT.2 | TGON                        | Motor rotation<br>signal | Inactive: Absolute value of filtered motor<br>speed lower than the setpoint of C03.2D<br>Active: Absolute value of filtered motor<br>speed reaching the setpoint of C03.2D | -       |  |
| FunOUT.3 | BK                          | Brake output             | Active: Brake signal outputted<br>Inactive: Brake signal not outputted                                                                                                     | -       |  |
| FunOUT.5 | WARN                        | Alarm                    | Active: Warning occurred on the servo drive<br>Inactive: No warning occurred on the servo<br>drive or the warning has been reset                                           | -       |  |
| FunOUT.4 | ALM                         | Fault                    | Active: Fault occurred on the servo drive<br>Inactive: No fault occurred on the servo<br>drive or the fault has been reset                                                 | -       |  |

## **Chapter 10**

### Troubleshooting

### 10.1 Fault Alarms

### 10.1.1 Fault display and category

The servo drive provides various protection functions, and triggers an alarm when a protection functions acts. Then, the LED panel displays the fault and its alarm code.



Figure 10-1 Fault code display

### NOTICE

- The servo drive can record the latest 10 faults/alarms and the servo drive status parameters upon
  occurrence of the faults/alarms. Repeated faults or alarms among the latest 5 logs are logged as
  one fault or alarm, and the servo drive status upon its occurrence is logged only once.
- When a single fault or an alarm occurs, the panel displays the fault or alarm code. When multiple faults or alarms occur, the panel displays the fault code of the highest level.
- After a fault or an alarm is reset, the servo drive still keeps the log of the fault or alarm. You can set F31.04 (Initialize fault record) to 1 to clear the fault and alarm records.

Alarm codes are divided into three categories (category 1 indicates the most severe level) based on the fault and alarm severity, which are specified by fault codes.

| Fault Category | Fault Code       | Resettable     |
|----------------|------------------|----------------|
| Class 1        | Er0x.x to Er3x.x | Non-resettable |
| Class 1        | Er4x.x to Er7x.x | Resettable     |
| Class 2        | Er8x.x to ErCx.x | Resettable     |
| Class 3        | ALFxx            | Resettable     |

### NOTICE

• "Resettable" means that the panel stops displaying the fault/alarm when a "reset signal" is input.

### 10.1.2 Troubleshooting and reset

### Checklist:

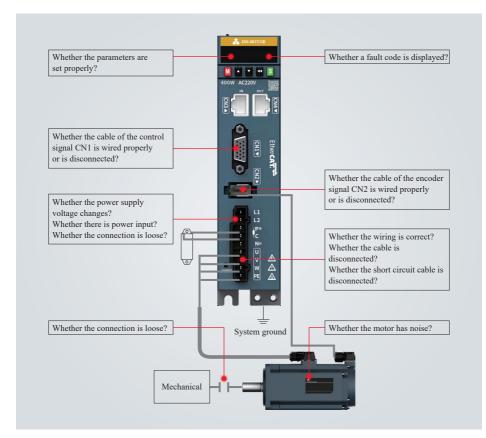



Figure 10-2 Troubleshooting checklist

#### **Reset operation:**

- Set F31.00 (Fault reset) to 1 to stop displaying the fault on the panel.
- To reset resettable faults, switch off the S-ON signal first and then send the fault reset signal (set F31.00 to 1).
- To reset resettable alarms, eliminate the alarm source and then the servo drive automatically resets the alarms.

# **CAUTION**

- Some faults/alarms can only be reset after the causes are rectified through setting modifications. However, a reset operation does not activate modifications.
- If the modification can be effective only after power-on, power on the device again.
- If the modification can be effective only after stop, turn off the S-ON signal. The servo drive can
  operate properly only after modifications are activated.

#### 10.1.3 List of faults and alarms

| Fault<br>Group | Fault<br>Code | Fault Name                                   | Fault<br>Code<br>(203F) | Bus Fault<br>Code<br>(603F) | Resettable     |
|----------------|---------------|----------------------------------------------|-------------------------|-----------------------------|----------------|
|                | Er01.0        | Mismatch of software versions                | 0x010                   | 0x6100                      | Non-resettable |
|                | Er01.1        | Mismatch of motor parameters                 | 0x011                   | 0x7122                      | Non-resettable |
|                | Er02.0        | Product matching fault. No specified drive   | 0x020                   | 0x6100                      | Non-resettable |
|                | Er02.1        | Product matching fault. No specified motor   | 0x021                   | 0x6100                      | Non-resettable |
|                | Er02.2        | Product matching fault. No specified encoder | 0x022                   | 0x6100                      | Non-resettable |
|                | Er03.0        | System parameter error                       | 0x030                   | 0x6320                      | Non-resettable |
| G1 1           | Er03.1        | Parameter out-of-range                       | 0x031                   | 0x6320                      | Non-resettable |
| Class 1        | Er03.2        | Parameter writing error                      | 0x032                   | 0x6320                      | Non-resettable |
|                | Er03.3        | Parameter reading error                      | 0x033                   | 0x6320                      | Non-resettable |
|                | Er05.0        | Current loop timeout                         | 0x050                   | 0x7500                      | Non-resettable |
|                | Er05.1        | Speed loop timeout                           | 0x051                   | 0x7500                      | Non-resettable |
|                | Er05.2        | Position loop timeout                        | 0x052                   | 0x7500                      | Non-resettable |
|                | Er05.3        | Serial port data check failure               | 0x053                   | 0x7500                      | Non-resettable |
|                | Er06.0        | Protection from out of control               | 0x060                   | 0x8400                      | Non-resettable |
|                | Er10.0        | P-hardware overcurrent                       | 0x100                   | 0x2312                      | Non-resettable |
|                | Er10.1        | N-hardware overcurrent                       | 0x101                   | 0x2312                      | Non-resettable |

#### Table 10-1 List of factory fault codes

| Fault<br>Group | Fault<br>Code | Fault Name                                                                           | Fault<br>Code<br>(203F) | Bus Fault<br>Code<br>(603F) | Resettable     |
|----------------|---------------|--------------------------------------------------------------------------------------|-------------------------|-----------------------------|----------------|
|                | Er10.2        | U phase software overcurrent                                                         | 0x102                   | 0x2312                      | Non-resettable |
|                | Er10.3        | V phase software overcurrent                                                         | 0x103                   | 0x2312                      | Non-resettable |
|                | Er10.4        | Output short circuited to ground                                                     | 0x104                   | 0x2330                      | Non-resettable |
|                | Er10.5        | Current sampling failure                                                             | 0x105                   | 0x6100                      | Non-resettable |
|                | Er10.6        | Incorrect current parameter setting                                                  | 0x106                   | 0x6320                      | Non-resettable |
|                | Er10.7        | UV current correction failure                                                        | 0x107                   | 0x6100                      | Non-resettable |
|                | Er10.8        | Excessive current zero drift                                                         | 0x108                   | 0x6100                      | Non-resettable |
|                | Er10.9        | Current exception during enabling                                                    | 0x109                   | 0x2312                      | Non-resettable |
|                | Er11.0        | Excessive motor speed upon servo drive power-on                                      | 0x110                   | 0xFF00                      | Non-resettable |
|                | Er11.1        | Drive over-temperature                                                               | 0x111                   | 0x2312                      | Non-resettable |
|                | Er20.1        | Encoder internal fault                                                               | 0x201                   | 0x7305                      | Non-resettable |
|                | Er20.2        | Encoder reading/writing error                                                        | 0x202                   | 0x7305                      | Non-resettable |
| Class 1        | Er20.3        | Encoder data frame loss                                                              | 0x203                   | 0x7305                      | Non-resettable |
|                | Er20.4        | Excessive encoder incremental position                                               | 0x204                   | 0x7305                      | Non-resettable |
|                | Er20.5        | Abnormal encoder data                                                                | 0x205                   | 0x7305                      | Non-resettable |
|                | Er20.6        | Mismatch of encoder type                                                             | 0x206                   | 0x7305                      | Non-resettable |
|                | Er20.7        | Encoder model not supported                                                          | 0x207                   | 0x7305                      | Non-resettable |
|                | Er20.8        | Encoder battery failure                                                              | 0x208                   | 0x7305                      | Non-resettable |
|                | Er20.9        | Encoder multi-turn error                                                             | 0x209                   | 0x7305                      | Non-resettable |
|                | Er21.0        | Mismatch between encoder pulses<br>per revolution and drive pulses per<br>revolution | 0x210                   | 0x7305                      | Non-resettable |
|                | Er31.0        | More than ten PDO mapping objects                                                    | 0x310                   | 0x8220                      | Non-resettable |
|                | Er32.0        | EtherCAT peripheral error                                                            | 0x320                   | 0x6100                      | Non-resettable |
|                | Er32.1        | ESI check error in FLASH                                                             | 0x321                   | 0x7600                      | Non-resettable |
|                | Er32.2        | Failure to read data from EEPROM through bus                                         | 0x322                   | 0x7600                      | Non-resettable |

| Fault<br>Group | Fault<br>Code | Fault Name                                        | Fault<br>Code<br>(203F) | Bus Fault<br>Code<br>(603F) | Resettable     |
|----------------|---------------|---------------------------------------------------|-------------------------|-----------------------------|----------------|
|                | Er32.3        | Failure of update to EEPROM through bus           | 0x323                   | 0x7600                      | Non-resettable |
|                | Er32.4        | Correctness of checksum in ESC configuration area | 0x324                   | 0x7600                      | Non-resettable |
|                | Er32.5        | EtherCAT failed to obtain valid XML information   | 0x325                   | 0x7600                      | Non-resettable |
|                | Er40.0        | Drive overload                                    | 0x400                   | 0x3230                      | Resettable     |
|                | Er41.0        | Motor overload                                    | 0x410                   | 0x3230                      | Resettable     |
|                | Er41.1        | Motor over-temperature due to locked-<br>rotor    | 0x411                   | 0x7121                      | Resettable     |
|                | Er41.2        | Motor over-temperature                            | 0x412                   | 0x4210                      | Resettable     |
|                | Er42.1        | Discharge tube temperature too high               | 0x421                   | 0x4210                      | Resettable     |
|                | Er42.2        | Heatsink temperature too high                     | 0x422                   | 0x4210                      | Resettable     |
| Class 1        | Er43.0        | Overvoltage                                       | 0x430                   | 0x3210                      | Resettable     |
|                | Er43.1        | Undervoltage                                      | 0x431                   | 0x3220                      | Resettable     |
|                | Er45.0        | S-ON enabling failure                             | 0x450                   | 0xFF00                      | Resettable     |
|                | Er46.0        | Motor overspeed                                   | 0x460                   | 0x8400                      | Resettable     |
|                | Er47.0        | Excessive position deviation                      | 0x470                   | 0x8611                      | Resettable     |
|                | Er47.1        | Position deviation overflow                       | 0x471                   | 0x8611                      | Resettable     |
|                | Er50.1        | D/Q current overflow                              | 0x501                   | 0x6100                      | Resettable     |
|                | Er51.0        | Offline inertia auto-tuning failure               | 0x510                   | 0x6310                      | Resettable     |
|                | Er51.1        | Offline inertia parameter error                   | 0x511                   | 0x6310                      | Resettable     |
|                | Er52.0        | Angle auto-tuning failure                         | 0x520                   | 0x7122                      | Resettable     |
|                | Er53.0        | Motor parameter auto-tuning timeout               | 0x530                   | 0x7122                      | Resettable     |
|                | Er53.1        | Resistance parameter auto-tuning failure          | 0x531                   | 0x7122                      | Resettable     |

| Fault<br>Group | Fault<br>Code | Fault Name                                                                                                                                         | Fault<br>Code<br>(203F) | Bus Fault<br>Code<br>(603F) | Resettable |
|----------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------|------------|
|                | Er53.2        | Inductance parameter auto-tuning failure                                                                                                           | 0x532                   | 0x7122                      | Resettable |
|                | Er53.3        | Back EMF parameter auto-tuning failure                                                                                                             | 0x533                   | 0x7122                      | Resettable |
|                | Er54.0        | Current loop auto-tuning failure                                                                                                                   | 0x540                   | 0x7122                      | Resettable |
|                | Er55.0        | Excessive vibration                                                                                                                                | 0x550                   | 0x7122                      | Resettable |
| Class 1        | Er74.0        | EtherCAT synchronization cycle setting error                                                                                                       | 0x740                   | 0x6320                      | Resettable |
|                | Er74.1        | No sync signal                                                                                                                                     | 0x741                   | 0x8700                      | Resettable |
|                | Er74.2        | Chip synchronization process uncompleted in OP                                                                                                     | 0x742                   | 0x8700                      | Resettable |
|                | Er80.0        | Control power undervoltage                                                                                                                         | 0x800                   | 0x3120                      | Resettable |
|                | Er81.0        | Input phase loss 1                                                                                                                                 | 0x810                   | 0x3130                      | Resettable |
|                | Er81.1        | Input phase loss 2                                                                                                                                 | 0x811                   | 0x3130                      | Resettable |
|                | Er81.2        | Output phase loss (reserved)                                                                                                                       | 0x812                   | -                           | Resettable |
|                | Er82.0        | DI function allocation fault                                                                                                                       | 0x820                   | 0x6320                      | Resettable |
|                | Er82.1        | DO function allocation fault                                                                                                                       | 0x821                   | 0x6320                      | Resettable |
|                | Er84.0        | Electronic gear ratio setting error                                                                                                                | 0x840                   | 0x6320                      | Resettable |
|                | Er84.1        | Software limit setting error                                                                                                                       | 0x841                   | 0x6320                      | Resettable |
|                | Er84.2        | Encoder resolution setting error                                                                                                                   | 0x842                   | 0x7122                      | Resettable |
| Class 2        | Er84.3        | Home position setting error                                                                                                                        | 0x843                   | 0xFF00                      | Resettable |
|                | Er87.1        | One-time excessive position reference<br>increment<br>(One-time increment of the target<br>position is over 5 times of the maximum<br>speed)       | 0x871                   | 0xFF00                      | Resettable |
|                | Er87.2        | Continuous excessive position reference<br>increment<br>(Increment of the target position exceeds<br>the maximum speed for 3 consecutive<br>times) | 0x872                   | 0xFF00                      | Resettable |
|                | Er87.3        | Overflow of 32-bit sign bit of the target position during limiting                                                                                 | 0x873                   | 0xFF00                      | Resettable |

| Fault<br>Group | Fault<br>Code | Fault Name                                                                                        | Fault<br>Code<br>(203F) | Bus Fault<br>Code<br>(603F) | Resettable |
|----------------|---------------|---------------------------------------------------------------------------------------------------|-------------------------|-----------------------------|------------|
|                | Er87.4        | Target position exceeding maximum<br>value of mechanical single-turn position<br>in rotating mode | 0x874                   | 0xFF00                      | Resettable |
|                | ErA0.1        | Multi-turn overflow fault                                                                         | 0xA01                   | 0x7305                      | Resettable |
|                | ErC1.0        | Excessive EtherCAT synchronization period error                                                   | 0xC10                   | 0x8700                      | Resettable |
|                | ErC1.1        | Synchronization loss                                                                              | 0xC11                   | 0x8700                      | Resettable |
| Class 2        | ErC1.2        | Network status switchover error                                                                   | 0xC12                   | 0x8700                      | Resettable |
|                | ErC1.4        | Network cable connection unreliable                                                               | 0xC14                   | 0x8700                      | Resettable |
|                | ErC1.5        | Data frame loss protection error                                                                  | 0xC15                   | 0x8700                      | Resettable |
|                | ErC1.6        | Data frame forwarding error                                                                       | 0xC16                   | 0x8700                      | Resettable |
|                | ErC1.7        | Data update timeout                                                                               | 0xC17                   | 0x8700                      | Resettable |
|                | ErC1.8        | Watchdog expired                                                                                  | 0xC18                   | 0x8700                      | Resettable |
|                | ErC2.0        | SYNC signal loss                                                                                  | 0xC20                   | 0x8700                      | Resettable |

Table 10-2 List of factory alarm codes

| Fault<br>Group | Alarm<br>Code | Alarm Name                                                 | Alarm<br>Code<br>(203F) | Bus Fault<br>Code<br>(603F) | Resettable |
|----------------|---------------|------------------------------------------------------------|-------------------------|-----------------------------|------------|
|                | ALF0.0        | Emergency stop alarm                                       | 0x0F00                  | 0x0F00                      | Resettable |
|                | ALF1.0        | Re-power-on required for parameter settings to take effect | 0xF10                   | 0x6320                      | Resettable |
|                | ALF1.1        | Frequent parameter storage alarm                           | 0xF11                   | 0x5530                      | Resettable |
|                | ALF1.2        | Torque reached parameter error                             | 0xF12                   | 0x6320                      | Resettable |
| Class 3        | ALF1.3        | Too frequent writing of EEPROM by host controller SDO      | 0xF13                   | 0x7600                      | Resettable |
|                | ALF2.0        | Forward overtravel alarm                                   | 0xF20                   | 0x5443                      | Resettable |
|                | ALF2.1        | Reverse overtravel alarm                                   | 0xF21                   | 0x5444                      | Resettable |
|                | ALF4.0        | Homing timeout                                             | 0xF40                   | 0x6320                      | Resettable |
|                | ALF4.1        | Homing DI conflict                                         | 0xF41                   | 0x6320                      | Resettable |

| Fault<br>Group | Alarm<br>Code | Alarm Name                                             | Alarm<br>Code<br>(203F) | Bus Fault<br>Code<br>(603F) | Resettable |
|----------------|---------------|--------------------------------------------------------|-------------------------|-----------------------------|------------|
|                | ALF4.2        | Homing mode conflict                                   | 0xF42                   | 0x6320                      | Resettable |
|                | ALF5.0        | Braking resistor overload                              | 0xF50                   | 0x3210                      | Resettable |
|                | ALF5.1        | Too small resistance of external regenerative resistor | 0xF51                   | 0x6320                      | Resettable |
| Class 3        | ALF6.1        | Output phase loss                                      | 0xF61                   | 0x3230                      | Resettable |
|                | ALF8.0        | Vibration occurred during auto-tuning                  | 0xF80                   | 0x7122                      | Resettable |
|                | ALF9.0        | Encoder battery voltage low                            | 0xF90                   | 0x7305                      | Resettable |
|                | ALFA.0        | Drive high temperature warning                         | 0xFA0                   | 0x7305                      | Resettable |
|                | xxnr          | Servo not ready                                        | 0xFFFF                  | -                           | Resettable |

### Table 10-3 List of bus fault codes

| <b>Bus Fault SN</b> | Bus Fault Code | Bus Fault Name            |  |
|---------------------|----------------|---------------------------|--|
| 0                   | 0x0000         | No fault                  |  |
| 1                   | 0x2312         | Continuous current fault  |  |
| 2                   | 0x2330         | Short circuit to ground   |  |
| 3                   | 0x3120         | Control power overvoltage |  |
| 4                   | 0x3130         | Phase loss                |  |
| 5                   | 0x3210         | Main circuit overvoltage  |  |
| 6                   | 0x3220         | Main circuit undervoltage |  |
| 7                   | 0x3230         | Overload                  |  |
| 8                   | 0x4210         | Over-temperature          |  |
| 9                   | 0x5443         | Forward overtravel        |  |
| 10                  | 0x5444         | Reverse overtravel        |  |
| 11                  | 0x5530         | Storage fault             |  |
| 12                  | 0x6320         | Parameter error           |  |
| 13                  | 0x7121         | Motor locked-rotor        |  |
| 14                  | 0x7122         | Motor mismatch            |  |
| 15                  | 0x7305         | Encoder error             |  |

| Bus Fault SN | Bus Fault Code | <b>Bus Fault Name</b>      |  |
|--------------|----------------|----------------------------|--|
| 16           | 0x7500         | Communication fault        |  |
| 17           | 0x7600         | Data storage               |  |
| 18           | 0x8400         | Speed control              |  |
| 19           | 0x8611         | Following fault            |  |
| 20           | 0x8220         | Length error               |  |
| 21           | 0x8700         | Synchronization controller |  |
| 22           | 0x8900         | Process data monitoring    |  |
| 23           | 0x0FFF         | Factory fault              |  |

## **10.2 Solutions**

| Code   | Name                                             | Cause                                                                                                                                                  | Solution                                                                                                                                                                                                   |
|--------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Er01.0 | Mismatch of software<br>versions                 | • The MCU and FPGA versions are incorrect.                                                                                                             | <ul> <li>Check whether the software versions are consistent.</li> <li>Contact technical support personnel or update the FPGA or MCU software.</li> </ul>                                                   |
| Er01.1 | Mismatch of motor<br>parameters                  | <ul> <li>Incorrect motor parameters</li> </ul>                                                                                                         | <ul><li>Replace with a servo drive or motor of the matching power.</li><li>Contact our company for technical support.</li></ul>                                                                            |
| Er02.0 | Product matching<br>fault. No specified<br>drive | • The set servo drive model is incorrect.                                                                                                              | • Check whether the model of the U42.10<br>servo drive is correct. If not, contact<br>technical support and correct the model.                                                                             |
| Er02.1 | Product matching<br>fault. No specified<br>motor | • The set motor model is incorrect.                                                                                                                    | <ul> <li>Read the motor model U42.11 and contact<br/>technical support.</li> </ul>                                                                                                                         |
| Er03.0 | System parameter<br>error                        | • The software is updated.                                                                                                                             | <ul> <li>Check whether the software is updated.</li> <li>Reset the servo drive model and the motor model, and restore default settings (set F31.02 to 1).</li> </ul>                                       |
|        |                                                  | <ul> <li>The control power voltage<br/>drops instantaneously.</li> <li>Instantaneous power failure<br/>occurs during parameter<br/>storage.</li> </ul> | <ul> <li>Check whether the voltage drops during control power cutoff or instantaneous power failure occurs.</li> <li>Restore default settings (set F31.02 to 1) and write the parameters again.</li> </ul> |

| Code   | Name                       | Cause                                                                                                                                                       | Solution                                                                                                                                                                                                                                                                                                                                                   |
|--------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |                            | • The times of parameter<br>writing within a certain<br>period of time exceeds the<br>limit.                                                                | <ul> <li>Check whether parameter update is performed frequently from the host controller.</li> <li>Change the way of parameter writing and write the parameters again.</li> </ul>                                                                                                                                                                          |
|        |                            | • The servo drive is faulty.                                                                                                                                | <ul> <li>If the fault persists after several times of<br/>power-on and parameter initialization,<br/>replace the servo drive.</li> </ul>                                                                                                                                                                                                                   |
| Er03.1 | Parameter out-of-<br>range | <ul> <li>The number of software<br/>parameters changes after<br/>upgrade. An address error<br/>occurs during reading and<br/>writing the change.</li> </ul> | <ul> <li>Check whether the parameter access address<br/>is out of range. You can view the group<br/>number and offset of the error code in U41-<br/>06 and U41-07.</li> <li>Restore factory settings.</li> </ul>                                                                                                                                           |
| Er03.2 | Parameter writing<br>error | <ul> <li>Parameter writing is<br/>frequent.</li> <li>The control power is<br/>unreliable.</li> <li>The servo drive is faulty.</li> </ul>                    | <ul> <li>Check whether the communication program contains a command that frequently modifies and writes parameters.</li> <li>Check the wiring of the control power and ensure that the control power voltage is within the limit.</li> <li>If the fault still persists after several times of power-on, replace the servo drive.</li> </ul>                |
| Er03.3 | Parameter reading<br>error | <ul> <li>Parameter reading is<br/>frequent.</li> <li>The servo drive is faulty.</li> </ul>                                                                  | <ul> <li>Check whether the communication program contains a command that frequently reads parameters.</li> <li>Modify a parameter, power on the servo drive again, and check whether the modification is saved.</li> <li>If the modification is not saved and the fault still persists after several times of power-on replace the servo drive.</li> </ul> |
| Er05.0 | Current loop timeout       | <ul> <li>The interval for MCU torque<br/>interruption scheduling is<br/>abnormal.</li> </ul>                                                                | • If the fault persists after several times of power-on, replace the servo drive.                                                                                                                                                                                                                                                                          |
| Er05.1 | Speed loop timeout         | • The interval for MCU speed scheduling is abnormal.                                                                                                        | • If the fault persists after several times of power-on, replace the servo drive.                                                                                                                                                                                                                                                                          |
| Er05.2 | Position loop timeout      | • The interval for MCU position interruption scheduling is abnormal.                                                                                        | <ul> <li>If the fault persists after several times of<br/>power-on, replace the servo drive.</li> </ul>                                                                                                                                                                                                                                                    |

| Code   | Name                      | Cause                                                                                                               | Solution                                                                                                                                                                                                                                     |
|--------|---------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Er06.0 | Runaway protection        | • The control circuit is<br>abnormal due to incorrect<br>wiring, resulting in motor<br>runaway and stall.           | <ul> <li>Check whether the servo drive power cables are connected to UVW terminals of the motor and servo drive in the correct sequence on both sides.</li> <li>Connect the U, V, and W phases according to the correct sequence.</li> </ul> |
|        |                           | • The interference signal<br>causes an error in the initial<br>phase detection of the motor<br>rotor upon power-on. | • The U, V, and W phase sequence is correct,<br>but Er06.0 occurs when the servo drive is<br>enabled. Power on the device again.                                                                                                             |
|        |                           | • The encoder model is set incorrectly.                                                                             | <ul><li>Check the motor model and encoder type.</li><li>Use the matching products.</li></ul>                                                                                                                                                 |
|        |                           | • The encoder cable is<br>connected incorrectly, aging,<br>or corroded, or the encoder<br>connector is loose.       | <ul> <li>Check whether the encoder cable is aging, corroded, or loosened.</li> <li>Re-solder, tighten, or replace the encoder cable.</li> </ul>                                                                                              |
|        |                           | • The gravity load is too large<br>when the motor controls a<br>vertical axis.                                      | • Check whether the load of the vertical axis<br>is too large. Reduce the load of the vertical<br>axis, increase the rigidity, or shield this fault<br>without affecting safety and use.                                                     |
|        |                           | • The servo vibration is<br>too large due to improper<br>parameters setting.                                        | <ul> <li>Set the parameters properly to avoid large servo vibration.</li> </ul>                                                                                                                                                              |
|        |                           | • The motor is dragged by an external force in the reverse direction.                                               | • If the motor runs properly and is actually dragged by an external force, consider to shield the protection from out of control (set C06.20 to 0 with caution).                                                                             |
| Er10.0 | P-hardware<br>overcurrent | • The gain is set improperly and the motor oscillates.                                                              | • Adjust the gain after determining the cause.                                                                                                                                                                                               |
|        |                           | • The encoder cable is<br>connected incorrectly, aging,<br>or corroded, or the encoder<br>connector is loose.       | <ul> <li>Re-solder, tighten, or replace the encoder cable.</li> </ul>                                                                                                                                                                        |
|        |                           | Braking resistor overcurrent                                                                                        | • Select a discharge resistor of proper resistance and model and route it again.                                                                                                                                                             |
|        |                           | • The servo drive is faulty.                                                                                        | • Replace the servo drive.                                                                                                                                                                                                                   |

| Code   | Name                            | Cause                                                                                                                              | Solution                                                                                                                                                                                                                                                                       |
|--------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Er10.1 | N-hardware<br>overcurrent       | • The gain is set improperly and the motor oscillates.                                                                             | • Adjust the gain after determining the cause.                                                                                                                                                                                                                                 |
|        |                                 | <ul> <li>The encoder cable is<br/>connected incorrectly, aging,<br/>or corroded, or the encoder<br/>connector is loose.</li> </ul> | • Re-solder, tighten, or replace the encoder cable.                                                                                                                                                                                                                            |
|        |                                 | Braking resistor overcurrent                                                                                                       | • Select a braking resistor of proper resistance and model and route it again.                                                                                                                                                                                                 |
|        |                                 | • The motor U/V/W cables are short circuited.                                                                                      | • Connect motor cables correctly or replace the motor with unbalanced resistance.                                                                                                                                                                                              |
|        |                                 | • The servo drive is faulty.                                                                                                       | • Replace the servo drive.                                                                                                                                                                                                                                                     |
| Er10.2 | U phase software overcurrent    | • The motor cables are in poor contact.                                                                                            | <ul> <li>Tighten the cables that are loosened or<br/>disconnected.</li> </ul>                                                                                                                                                                                                  |
|        |                                 | • The motor cables are grounded.                                                                                                   | • Replace the motor in the case of poor insulation.                                                                                                                                                                                                                            |
|        |                                 | • The motor U/V/W cables are short circuited.                                                                                      | • Unplug the motor cables and check whether<br>short-circuit occurs among U, V, and W<br>phases and whether burrs exist on the cable<br>connections. Unplug the motor cables and<br>measure whether the resistance among U, V,<br>and W phases of the motor cable is balanced. |
|        |                                 | • The motor is damaged.                                                                                                            | • Connect motor cables correctly or replace the motor with unbalanced resistance.                                                                                                                                                                                              |
| Er10.3 | V phase software<br>overcurrent | • The motor cables are in poor contact.                                                                                            | <ul> <li>Tighten the cables that are loosened or<br/>disconnected.</li> </ul>                                                                                                                                                                                                  |
|        |                                 | • The motor cables are grounded.                                                                                                   | • Replace the motor in the case of poor insulation.                                                                                                                                                                                                                            |
|        |                                 | • The motor U/V/W cables are short circuited.                                                                                      | • Unplug the motor cables and check whether<br>short-circuit occurs among U, V, and W<br>phases and whether burrs exist on the cable<br>connections. Unplug the motor cables and<br>measure whether the resistance among U, V,<br>and W phases of the motor cable is balanced. |
|        |                                 | • The motor is damaged.                                                                                                            | • Connect motor cables correctly or replace the motor with unbalanced resistance.                                                                                                                                                                                              |

| Code   | Name                                                   | Cause                                                                                | Solution                                                                                                                                                                                                                                                                                                |
|--------|--------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Er10.4 | Output short circuited to ground                       | • The servo drive power<br>cables (U/V/W) are short-<br>circuited to ground.         | <ul> <li>Re-connect or replace the power cables of<br/>the servo drive.</li> </ul>                                                                                                                                                                                                                      |
|        |                                                        | • The motor is short-circuited to ground.                                            | • Replace the motor.                                                                                                                                                                                                                                                                                    |
|        |                                                        | • The servo drive is faulty.                                                         | • Replace the servo drive.                                                                                                                                                                                                                                                                              |
|        | Current sampling<br>failure                            | <ul> <li>Current sampling of phase U<br/>or V is abnormal.</li> </ul>                | <ul> <li>Check for interference sources on the site.</li> <li>Check the grounding of the servo drive<br/>and motor and whether anti-interference<br/>measures such as shielding are properly<br/>applied.</li> <li>Add magnetic rings to the power cable and<br/>encoder cable of the motor.</li> </ul> |
|        |                                                        | • The internal current sampling chip is damaged.                                     | • Replace the servo drive.                                                                                                                                                                                                                                                                              |
| Er10.6 | Incorrect current parameter setting                    | • Incorrect setting of current sampling parameters                                   | • If the fault persists upon next power-on, replace the servo drive.                                                                                                                                                                                                                                    |
| Er10.7 | UV current correction failure                          | • The current correction<br>detection accuracy error is<br>greater than 5%.          | • If the fault persists upon next power-on, replace the servo drive.                                                                                                                                                                                                                                    |
| Er10.8 | Excessive current<br>zero drift                        | • The current zero drift<br>detected upon power on is<br>greater than the threshold. | • If the fault persists upon next power-on, replace the servo drive.                                                                                                                                                                                                                                    |
| Er10.9 | The sampled current<br>during enabling is too<br>large | • The sampled current during enabling is too large.                                  | <ul> <li>If the fault persists after several times of<br/>drive enabling, replace the servo drive.</li> </ul>                                                                                                                                                                                           |
| Er11.0 | Excessive motor<br>speed upon servo<br>drive power-on  | • The motor is rotating when<br>the servo drive is powered<br>on.                    | <ul> <li>Keep the motor stationary when the servo<br/>drive is powered on.</li> </ul>                                                                                                                                                                                                                   |
| Er11.1 | Drive over-<br>temperature                             | • Drive over-temperature                                                             | <ul> <li>Check whether the fan is abnormal or<br/>whether the ambient temperature is too high.</li> <li>Improve the installation conditions of the<br/>servo unit to reduce the ambient temperature.</li> <li>If the fault persists upon next power-on,<br/>replace the servo drive.</li> </ul>         |
| Er20.1 | Encoder internal fault                                 | • The encoder has an internal fault.                                                 | • Replace the motor.                                                                                                                                                                                                                                                                                    |

| Code   | Name                                   | Cause                                                                                                                                                     | Solution                                                                                                                                                                                                                                                                                                                                               |
|--------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Er20.2 | Encoder reading/<br>writing error      | <ul> <li>Encoder data exchange<br/>exception upon power-on.</li> </ul>                                                                                    | <ul> <li>Use a new encoder cable. If the fault no longer occurs after cable replacement, the original encoder cable is damaged. If the fault persists after the encoder cable is replaced, the encoder may be faulty. In this case, replace the servo motor.</li> <li>Add magnetic rings to the power cable and encoder cable of the motor.</li> </ul> |
| Er20.3 | Encoder data frame loss                | • The encoder cable is abnormal.                                                                                                                          | • Replace the encoder cable.                                                                                                                                                                                                                                                                                                                           |
|        |                                        | • Intensive interference to the encoder                                                                                                                   | <ul> <li>Add magnetic rings to the power cable and encoder cable of the motor.</li> <li>If the fault persists after the servo drive is powered off and on several times, the encoder is faulty. In this case, replace the servo motor.</li> </ul>                                                                                                      |
| Er20.4 | Excessive encoder incremental position | <ul> <li>Abnormal single-turn<br/>position of the encoder</li> </ul>                                                                                      | <ul> <li>Route the motor cables and encoder cables through different routes if they are bundled together.</li> <li>If the fault persists after the servo drive is powered off and on several times, the encoder is faulty. In this case, replace the servo motor.</li> </ul>                                                                           |
| Er20.5 | Abnormal encoder<br>data               | <ul> <li>Internal parameters of the encoder are abnormal.</li> </ul>                                                                                      | <ul> <li>Route the motor cables and encoder cables through different routes if they are bundled together.</li> <li>If the fault persists after the servo drive is powered off and on several times, the encoder is faulty. In this case, replace the servo motor.</li> </ul>                                                                           |
| Er20.6 | Mismatch of encoder type               | • Motor model mismatch                                                                                                                                    | • Use the motor that matches the drive.                                                                                                                                                                                                                                                                                                                |
| Er20.7 | Encoder model not supported            | • Encoder model not supported                                                                                                                             | • Use the motor that matches the drive.                                                                                                                                                                                                                                                                                                                |
| Er20.8 | Encoder battery failure                | • The encoder battery voltage is too low.                                                                                                                 | • Replace with a new battery of matching voltage.                                                                                                                                                                                                                                                                                                      |
|        |                                        | <ul> <li>The battery is replaced or no battery is connected during power-off.</li> <li>C00.07 is set to the absolute value for the first time.</li> </ul> | • Set F31-10 to 4 to reset the encoder, and power on the machine again.                                                                                                                                                                                                                                                                                |

| Code   | Name                                                                                    | Cause                                                                                                                          | Solution                                                                                                                                                                                                                      |
|--------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Er20.9 | Encoder multi-turn<br>error                                                             | <ul> <li>An encoder multi-turn counting error occurs.</li> </ul>                                                               | <ul> <li>Set F31.10 to 4 to reset the encoder, and power on the machine again.</li> <li>If the fault persists after multiple times of power-on, replace the motor.</li> </ul>                                                 |
| Er21.0 | Mismatch between<br>encoder pulses per<br>revolution and drive<br>pulses per revolution | • Mismatch between encoder pulses per revolution and drive pulses per revolution                                               | • Distribute parameters again for the encoder.                                                                                                                                                                                |
| Er31.0 | More than ten PDO<br>mapping objects                                                    | • The number of mapping<br>objects in TPDO or RPDO<br>exceeds 10.                                                              | <ul> <li>Modify the number of PDO mapping objects<br/>to a value smaller than or equal to 10.</li> </ul>                                                                                                                      |
| Er32.0 | EtherCAT peripheral error                                                               | • EEPROM or IIC bus error.                                                                                                     | • Replace the servo drive.                                                                                                                                                                                                    |
| Er32.1 | ESI check error in<br>FLASH                                                             | • The XML configuration file is not programmed.                                                                                | • Check whether the XML version in U42.0B is normal. Program the XML file.                                                                                                                                                    |
| Er32.2 | Failure to read data<br>from EEPROM<br>through bus                                      | • Reading EtherCAT data from EEPROM fails.                                                                                     | <ul> <li>If the fault persists after the servo drive is<br/>powered off and on several times, replace the<br/>servo drive.</li> </ul>                                                                                         |
| Er32.3 | Failure of update to<br>EEPROM through<br>bus                                           | • The bus fails to update<br>EtherCAT data to EEPROM.                                                                          | <ul> <li>If the fault persists after the servo drive is<br/>powered off and on several times, replace the<br/>servo drive.</li> </ul>                                                                                         |
| Er32.4 | Correctness of<br>checksum in ESC<br>configuration area                                 | <ul> <li>An error occurs during XML load check.</li> </ul>                                                                     | <ul> <li>If the fault persists after the servo drive is<br/>powered off and on several times, replace the<br/>servo drive.</li> </ul>                                                                                         |
| Er32.5 | EtherCAT failed to<br>obtain valid XML<br>information                                   | • Failed to load the XML file during EtherCAT communication.                                                                   | • Check whether the XML version in U42.0B<br>is normal. Program the XML file. Contact<br>the technical support personnel.                                                                                                     |
| Er40.0 | Drive overload                                                                          | • The servo drive overloads.                                                                                                   | <ul> <li>Check whether the load rate (U40.07) and<br/>current feedback during drive running are<br/>too large. If large load is required by the<br/>operating conditions, use a servo drive of a<br/>higher power.</li> </ul> |
| Er41.0 | Motor overload                                                                          | • The motor and encoder cables are connected improperly or in poor contact.                                                    | <ul> <li>Connect the cables according to the correct wiring diagram.</li> <li>When customized cables are used, prepare and connect the cables according to the wiring instructions.</li> </ul>                                |
|        |                                                                                         | • The load is too large. The<br>motor keeps outputting<br>effective torque higher than<br>the rated torque for a long<br>time. | • Check whether the average load factor of the servo drive is greater than 100.0% for a long time.                                                                                                                            |

| Code   | Name                                              | Cause                                                                                                           | Solution                                                                                                                                                                                                                                                                                                                                                                                     |
|--------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |                                                   | <ul> <li>Acceleration/deceleration<br/>is too frequent or the load<br/>inertia is too large.</li> </ul>         | <ul> <li>Use a large-capacity servo drive and a matching motor, or reduce the load and increase the acceleration/deceleration time.</li> <li>Check the mechanical inertia ratio or perform inertia auto-tuning, and view the value. Check the single running cycle when the servo motor runs cyclically. Increase the acceleration/deceleration time during single-cycle running.</li> </ul> |
|        |                                                   | • The gain is improper or the rigidity is too high.                                                             | <ul><li>Check whether the motor vibrates and<br/>generates abnormal noise during running.</li><li>Adjust the gain again.</li></ul>                                                                                                                                                                                                                                                           |
|        |                                                   | • The servo drive or motor model is set incorrectly.                                                            | • View the servo drive nameplate, set the servo drive and motor models correctly, and use a matching servo motor.                                                                                                                                                                                                                                                                            |
|        |                                                   | • Motor locked-rotor occurs<br>due to mechanical factors,<br>resulting in overload during<br>running.           | • Eliminate mechanical factors.                                                                                                                                                                                                                                                                                                                                                              |
|        |                                                   | • The servo drive is faulty.                                                                                    | • If the fault persists after the servo drive is powered off and on again, replace the servo drive.                                                                                                                                                                                                                                                                                          |
| Er41.1 | Motor over-<br>temperature due to<br>locked-rotor | • Power output (UVW) phase<br>loss, disconnection, or<br>incorrect phase sequence<br>occurs on the servo drive. | <ul> <li>Perform motor trial run without load and<br/>check cable connections with a multimeter.<br/>Check whether the cable phase sequence is<br/>correct.</li> <li>Connect cables again according to the<br/>correct wiring diagram or replace the cables.</li> </ul>                                                                                                                      |
|        |                                                   | <ul> <li>Motor parameters are set incorrectly.</li> </ul>                                                       | <ul> <li>Read parameters in group R20 and check<br/>whether the number of pole pairs is correct.</li> <li>Auto-tune the motor angle multiple times<br/>and check whether the obtained values are<br/>consistent.</li> <li>Correct motor parameters.</li> </ul>                                                                                                                               |
|        |                                                   | • The communication command is interfered.                                                                      | • Check whether commands from the host controller jitters and eliminate EtherCAT communication interference.                                                                                                                                                                                                                                                                                 |
|        |                                                   | <ul> <li>Motor locked-rotor occurs<br/>due to mechanical factors.</li> </ul>                                    | <ul> <li>Check for mechanical factors such as<br/>locking, occasional jamming, or eccentricity.</li> <li>If the fault persists after the servo drive is<br/>powered off and on several times, contact<br/>our company for technical support.</li> </ul>                                                                                                                                      |

| Code   | Name                          | Cause                                                                                               | Solution                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------|-------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Er41.2 | Motor over-<br>temperature    | <ul> <li>The PTC temperature sensor<br/>of the motor detects motor<br/>over-temperature.</li> </ul> | <ul> <li>Check for the PTC motor and check whether the PTC cable is connected to the servo drive.</li> <li>If the servo drive or motor does not support PTC, disable the PTC function (C06-16=0).</li> </ul>                                                                                                                                                                                                                                       |
| Er42.2 | Heatsink temperature too high | • The ambient temperature is too high.                                                              | • Improve the cooling conditions of the servo drive to reduce the ambient temperature.                                                                                                                                                                                                                                                                                                                                                             |
|        |                               | • The servo drive is powered<br>off and on for several times<br>to reset the overload fault.        | • Change the fault reset method. After<br>overload occurs, wait for 30s before reset.<br>Increase the capacity of the servo drive and<br>motor, increase the acceleration/deceleration<br>time, and reduce the load.                                                                                                                                                                                                                               |
|        |                               | • The fan is damaged.                                                                               | <ul> <li>Check whether the fan works when the<br/>motor runs. Replace the servo drive.</li> </ul>                                                                                                                                                                                                                                                                                                                                                  |
|        |                               | • The installation direction or clearance of the servo drive is improper.                           | <ul> <li>Install the servo drive according to the installation requirements.</li> </ul>                                                                                                                                                                                                                                                                                                                                                            |
|        |                               | • The servo drive is faulty.                                                                        | • If the fault persists even though the servo<br>drive is restarted 5 minutes after power-off,<br>replace the servo drive.                                                                                                                                                                                                                                                                                                                         |
| Er43.0 | Overvoltage                   | • The main circuit input voltage is too high.                                                       | <ul> <li>Replace or adjust the power supply<br/>according to the specifications.</li> </ul>                                                                                                                                                                                                                                                                                                                                                        |
|        |                               | <ul> <li>The power supply is unstable<br/>or affected by lightning.</li> </ul>                      | <ul> <li>Monitor whether the power supply of the servo drive is stable, affected by lightning or satisfies the specifications.</li> <li>Connect an SPD and then switch on the power supplies of the control circuit and the main circuit. If the fault persists, replace the servo drive.</li> </ul>                                                                                                                                               |
|        |                               | • The braking resistor fails.                                                                       | <ul> <li>Check the wiring of the braking resistor.<br/>Measure the resistance of the external<br/>braking resistor between P<sup>⊕</sup> and C. If the<br/>resistance is ∞, the internal cables of the<br/>braking resistor are broken. In this case,<br/>replace the resistor.</li> <li>Set the power and resistance of the external<br/>braking resistor according to the specifications<br/>of the external braking resistor in use.</li> </ul> |

| Code   | Name                  | Cause                                                                                                                                      | Solution                                                                                                                                                                                                                                                                                                                                                                              |
|--------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |                       | • The resistance of the<br>external braking resistor<br>is too large, and energy<br>absorption during braking is<br>insufficient.          | <ul> <li>Measure the resistance of the external braking resistor between P<sup>®</sup> and C and compare the measured value with the recommended value. Connect a new external braking resistor of recommended resistance.</li> <li>Set the power and resistance of the external braking resistor according to the specifications of the external braking resistor in use.</li> </ul> |
|        |                       | • The motor is in abrupt<br>acceleration/deceleration<br>status. The maximum<br>braking energy exceeds the<br>energy absorption value.     | • Confirm the acceleration/deceleration time during running and measure whether the DC bus voltage exceeds the fault threshold during deceleration.                                                                                                                                                                                                                                   |
|        |                       | • The bus voltage sampling value deviates greatly from the actual measured value.                                                          | <ul> <li>Ensure the input voltage of the main circuit<br/>is within the specified range, and then<br/>increase the acceleration/deceleration time<br/>within the allowable range.</li> <li>Contact our company for technical support.</li> </ul>                                                                                                                                      |
|        |                       | • The servo drive is faulty.                                                                                                               | <ul> <li>If the fault persists after the main circuit is powered off and on several times.</li> <li>Replace the servo drive.</li> </ul>                                                                                                                                                                                                                                               |
| Er43.1 | Undervoltage          | <ul> <li>The power supply of the main circuit is unstable or power failure occurs.</li> <li>Instantaneous power failure occurs.</li> </ul> | • Measure whether the input voltages at the main circuit cables and servo drive comply with the specifications. Increase the power capacity.                                                                                                                                                                                                                                          |
|        |                       | <ul> <li>The power voltage drops<br/>during operation.</li> </ul>                                                                          | <ul> <li>Monitor the power input voltage of the servo<br/>drive and check whether the main circuit<br/>power supply is applied to other devices,<br/>resulting in insufficient power capacity and<br/>voltage drop. Increase the power capacity.</li> </ul>                                                                                                                           |
|        |                       | • Phase loss: A single-phase<br>power supply is used for a<br>three-phase servo drive.                                                     | <ul> <li>Check whether the main circuit wiring is correct and secure.</li> <li>Replace the cables and connect the main circuit cables properly.</li> </ul>                                                                                                                                                                                                                            |
|        |                       | • The servo drive is faulty.                                                                                                               | • If the fault persists after the main circuit is powered off and on several times, replace the servo drive.                                                                                                                                                                                                                                                                          |
| Er45.0 | S-ON enabling failure | <ul> <li>The multiple S-ON enabling methods conflict.</li> </ul>                                                                           | <ul> <li>Do not turn on the S-ON signal<br/>simultaneously for multiple control modes<br/>(such as servo background and host<br/>controller).</li> </ul>                                                                                                                                                                                                                              |

| Code   | Name                         | Cause                                                                                           | Solution                                                                                                                                                                                                                                                                          |
|--------|------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Er46.0 | Motor overspeed              | • The motor cable U, V,<br>and W phase sequence is<br>incorrect.                                | • Check whether the servo drive power<br>cables are connected to UVW terminals<br>of the motor and servo drive in the correct<br>sequence on both sides. Connect the U,<br>V, and W phases according to the correct<br>sequence.                                                  |
|        |                              | • The overspeed threshold is set incorrectly.                                                   | • Check whether the overspeed threshold is<br>smaller than the actual maximum motor<br>speed. Reset the overspeed threshold<br>according to the mechanical requirements.<br>When C06.03 is set to 0, the overspeed<br>threshold is the maximum speed of the<br>motor.             |
|        |                              | • The input reference exceeds the overspeed threshold.                                          | • Check whether the motor speed<br>corresponding to the input reference exceeds<br>the overspeed threshold. Set the speed<br>limit to a value smaller than the overspeed<br>threshold.                                                                                            |
|        |                              | • The motor speed overshoots.                                                                   | • Check whether the speed feedback exceeds<br>the overspeed threshold through the<br>commissioning platform. Adjust the gain or<br>mechanical operating conditions.                                                                                                               |
|        |                              | • The servo drive is faulty.                                                                    | • If the fault persists after the servo drive is powered off and on, replace the servo drive.                                                                                                                                                                                     |
| Er47.0 | Excessive position deviation | • Power output (UVW) phase<br>loss or incorrect phase<br>sequence occurs on the<br>servo drive. | <ul> <li>Perform motor trial run without load and<br/>check cable connections.</li> <li>Connect cables again according to the correct<br/>wiring diagram or replace the cables.</li> </ul>                                                                                        |
|        |                              | • The servo drive UVW output cable or the encoder cable breaks.                                 | <ul> <li>Check and connect the cables again. Check whether the servo motor power cables (UVW) are in the same phase sequence as the servo drive cables.</li> <li>Replace all the cables with new cables if necessary and ensure all the cables are connected securely.</li> </ul> |
|        |                              | • Motor locked-rotor occurs due to mechanical factors.                                          | • Eliminate mechanical factors.                                                                                                                                                                                                                                                   |
|        |                              | • The servo drive gain is low.                                                                  | • Adjust the gain manually or perform gain auto-tuning.                                                                                                                                                                                                                           |
|        |                              | • The position reference increment is too large.                                                | • Increase the acceleration/deceleration ramp.<br>Decrease the gear ratio according to the<br>actual conditions.                                                                                                                                                                  |

| Code   | Name                           | Cause                                                                                                                | Solution                                                                                                                                                                                                                                                                                                             |
|--------|--------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |                                | • The fault value is too small<br>in relative to the operating<br>conditions.                                        | • Check whether the position deviation fault value is set to a too small value. Increase the position deviation alarm threshold (6065h).                                                                                                                                                                             |
|        |                                | • The servo drive or motor is faulty.                                                                                | • Monitor the operating waveform through<br>the oscilloscope function in the drive<br>commissioning platform: position reference,<br>position feedback, speed reference, and<br>torque reference. If the position reference is<br>not 0, but the position feedback is always 0,<br>replace the servo drive or motor. |
| Er47.1 | Position deviation<br>overflow | <ul> <li>Power output (UVW) phase<br/>loss or incorrect phase<br/>sequence occurs on the<br/>servo drive.</li> </ul> | <ul> <li>Perform motor trial run without load and<br/>check cable connections.</li> <li>Connect cables again according to the correct<br/>wiring diagram or replace the cables.</li> </ul>                                                                                                                           |
|        |                                | • The servo drive UVW output cable or the encoder cable breaks.                                                      | <ul> <li>Check and connect the cables again. Check whether the servo motor power cables (UVW) are in the same phase sequence as the servo drive cables.</li> <li>Replace all the cables with new cables if necessary and ensure all the cables are connected securely.</li> </ul>                                    |
|        |                                | <ul> <li>Motor locked-rotor occurs<br/>due to mechanical factors.</li> </ul>                                         | • Eliminate mechanical factors.                                                                                                                                                                                                                                                                                      |
|        |                                | • The servo drive gain is low.                                                                                       | • Adjust the gain manually or perform gain auto-tuning.                                                                                                                                                                                                                                                              |
|        |                                | • The position reference increment is too large.                                                                     | • Adjust the position reference. Decrease the gear ratio according to the actual conditions.                                                                                                                                                                                                                         |
|        |                                | • The fault value is too small<br>in relative to the operating<br>conditions.                                        | • Check whether the position deviation fault value is set to a too small value. Increase the setpoint.                                                                                                                                                                                                               |
|        |                                | • The servo drive or motor is faulty.                                                                                | • Monitor the operating waveform through<br>the oscilloscope function in the drive<br>commissioning platform: position reference,<br>position feedback, speed reference, and<br>torque reference. If the position reference is<br>not 0, but the position feedback is always 0,<br>replace the servo drive or motor. |
| Er50.1 | D/Q current overflow           | • A current sampling error occurs.                                                                                   | • If the fault persists after several times of power-on, replace the servo drive.                                                                                                                                                                                                                                    |

| Code   | Name                                               | Cause                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Solution                                                                                                                                                                                                                                                                                                                                                                                  |
|--------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Er51.0 | Offline inertia auto-<br>tuning failure            | <ul> <li>Continuous vibration occurs<br/>during auto-tuning. The<br/>auto-tuning result fluctuates<br/>greatly.</li> <li>The mechanical connection<br/>of the load is loose due to<br/>offset of the machinery.</li> <li>An alarm is reported during<br/>the auto-tuning process,<br/>leading to operation<br/>interruption.</li> <li>Vibration of the load<br/>with large inertia cannot<br/>be suppressed. The<br/>acceleration/deceleration<br/>time must be increased to<br/>ensure that the motor current<br/>is not saturated.</li> </ul> | <ul> <li>Enable the vibration suppression function<br/>to eliminate vibration if vibration cannot be<br/>automatically suppressed.</li> <li>Troubleshoot and remove the alarm. After<br/>that, perform auto-tuning again.</li> <li>Increase the maximum running speed,<br/>decrease the acceleration/deceleration<br/>time, and shorten the travel of the screw<br/>machinery.</li> </ul> |
| Er51.1 | Offline inertia<br>parameter error                 | • The torque during auto-<br>tuning is too large.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | • Decrease the auto-tuning speed (C07.01)<br>and auto-tuning target torque (C07.03), and<br>increase the number of auto-tuning turns<br>(C07.04).                                                                                                                                                                                                                                         |
| Er52.0 | Angle auto-tuning failure                          | • Angle auto-tuning failure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul><li>Set the motor parameters correctly.</li><li>Perform motor wiring again.</li></ul>                                                                                                                                                                                                                                                                                                 |
| Er53.0 | Motor parameter<br>auto-tuning timeout             | • Motor parameter auto-tuning timeout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • Contact our company for technical support.                                                                                                                                                                                                                                                                                                                                              |
| Er53.1 | Resistance parameter auto-tuning failure           | <ul> <li>Resistance parameter auto-<br/>tuning failure</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | • Contact our company for technical support.                                                                                                                                                                                                                                                                                                                                              |
| Er53.2 | Inductance parameter auto-tuning failure           | <ul> <li>Inductance parameter auto-<br/>tuning failure</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | • Contact our company for technical support.                                                                                                                                                                                                                                                                                                                                              |
| Er53.3 | Back EMF parameter auto-tuning failure             | <ul> <li>Back EMF parameter auto-<br/>tuning failure</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | • Contact our company for technical support.                                                                                                                                                                                                                                                                                                                                              |
| Er54.0 | Current loop auto-<br>tuning failure               | <ul> <li>Current loop auto-tuning<br/>failure</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | • Contact our company for technical support.                                                                                                                                                                                                                                                                                                                                              |
| Er55.0 | Excessive vibration                                | • The vibration is excessive.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | • Reset the gain parameters.                                                                                                                                                                                                                                                                                                                                                              |
| Er74.0 | EtherCAT<br>synchronization cycle<br>setting error | <ul> <li>After the system switches<br/>over to the operation mode,<br/>the synchronization cycle is<br/>not an integral multiple of<br/>250 µs.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                      | Change the synchronization cycle of the host controller.                                                                                                                                                                                                                                                                                                                                  |

| Code   | Name                                                 | Cause                                                                                                                          | Solution                                                                                                                                                                                                                                                                                                                                                  |
|--------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Er74.1 | No sync signal                                       | • The communication<br>synchronization clock is<br>configured incorrectly for<br>the master.                                   | <ul> <li>Correct the master communication<br/>configuration.</li> </ul>                                                                                                                                                                                                                                                                                   |
| Er74.2 | Chip synchronization<br>process uncompleted<br>in OP | <ul> <li>Synchronization interrupt<br/>is not detected in several<br/>position loop periods of the<br/>servo drive.</li> </ul> | <ul> <li>If the fault persists after re-power-on, contact<br/>us.</li> </ul>                                                                                                                                                                                                                                                                              |
| Er80.0 | Control power<br>undervoltage                        | • The control power supply<br>is unstable or power failure<br>occurs.                                                          | • Check whether the voltage drops during<br>control power cutoff or instantaneous power<br>failure occurs. Power on the device again.<br>If the fault is caused by abnormal power<br>failure, ensure stable power supply. Check<br>whether the input voltage of the control<br>power cables satisfies the specifications.<br>Increase the power capacity. |
|        |                                                      | • The control power cables are in poor contact.                                                                                | <ul> <li>Check whether control power cables are<br/>connected and whether voltage of control<br/>power cables on the servo drive side satisfies<br/>the specifications. Connect the cables again<br/>or replace the cables.</li> </ul>                                                                                                                    |
| Er81.0 | Input phase loss 1                                   | Input phase loss                                                                                                               | • Check whether the input three-phase AC power supply is normal. If the power supply is normal, replace the drive.                                                                                                                                                                                                                                        |
| Er81.1 | Input phase loss 2                                   | Input phase loss                                                                                                               | • Check whether the input three-phase AC power supply is normal. If the power supply is normal, replace the drive.                                                                                                                                                                                                                                        |
| Er81.2 | Output phase loss<br>(reserved)                      | • Output UVW disconnection                                                                                                     | • Replace the motor cable.                                                                                                                                                                                                                                                                                                                                |
| Er82.0 | DI function allocation<br>fault                      | • One function is allocated to multiple DI terminals.                                                                          | <ul> <li>Allocate different function numbers to<br/>parameters allocated with the same non-zero<br/>function number, and turn on the control<br/>power supply to make the settings take effect.<br/>Or, disable the S-ON signal and then send a<br/>reset signal to make the settings take effect.</li> </ul>                                             |
|        |                                                      | • The function number set for the DI terminal exceeds the maximum value.                                                       | • Check whether the MCU program is<br>updated. Restore default settings (F31.02=1)<br>and power on the system again.                                                                                                                                                                                                                                      |
| Er82.1 | DO function<br>allocation fault                      | • The function number set for<br>the DO terminal exceeds the<br>maximum value.                                                 | • Set the correct DO function number. Restore default settings (F31.02=1) and power on the system again.                                                                                                                                                                                                                                                  |

| Code   | Name                                                                                                                                                | Cause                                                                                                                                      | Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Er84.0 | Electronic gear ratio setting error                                                                                                                 | • The electronic gear ratio exceeds the limit.                                                                                             | • Set the electronic gear ratio correctly (0.001, 4000 x Encoder resolution/10000).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Er84.1 | Software limit setting<br>error                                                                                                                     | • The software limit lower<br>limit is greater than or equal<br>to the upper limit.                                                        | • Reset the value to make the minimum software absolute position limit is smaller than the maximum one.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Er84.2 | Encoder resolution setting error                                                                                                                    | • The encoder resolution is abnormal.                                                                                                      | • Restore default settings (C31.02=1) and power on the system again.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Er84.3 | Home position setting<br>error                                                                                                                      | • The home offset is beyond the software limits.                                                                                           | • When the encoder works in the incremental,<br>absolute linear, or single-turn absolute value<br>mode, set the home offset to be within the<br>software limits.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        |                                                                                                                                                     | • The home offset is beyond the limits in rotating mode.                                                                                   | • When the encoder works in the rotating mode, set the home offset to a value between the upper and lower limits of the mechanical single-turn.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Er87.1 | One-time excessive<br>position reference<br>increment (one-<br>time increment of<br>the target position is<br>over 5 times of the<br>maximum speed) | • The target position<br>increment is too large. One-<br>time increment of the target<br>position is over 5 times of<br>the maximum speed. | <ul> <li>Check the change of two adjacent target positions through the drive commissioning platform.</li> <li>Check whether the maximum speed of the motor meets application requirements. If yes, decrease the target position reference increment to lower the planned reference speed. If no, replace the motor.</li> <li>Before switching the mode or enabling the S-ON signal, align the target position with the current position feedback.</li> <li>Check the encoder resolution and electronic gear ratio set for the host controller. Check whether the encoder resolution.</li> <li>If data received from the slave is incorrect due to communication time sequence error of the host controller.</li> </ul> |

| Code   | Name                                                                                                                                                     | Cause                                                                                                                                                                    | Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Er87.2 | Continuous excessive<br>position reference<br>increment (increment<br>of the target<br>position exceeds the<br>maximum speed for 3<br>consecutive times) | • The target position<br>increment is too large.<br>Increment of the target<br>position exceeds the<br>maximum speed for 3<br>consecutive times.                         | <ul> <li>Check the change of two adjacent target positions through the drive commissioning platform.</li> <li>Check whether the maximum speed of the motor meets application requirements. If yes, decrease the target position reference increment to lower the planned reference speed. If no, replace the motor.</li> <li>Before switching the mode or enabling the S-ON signal, align the target position with the current position feedback.</li> <li>If data received from the slave is incorrect due to communication time sequence error of the host controller, check the communication sequence of the host controller.</li> </ul> |
| Er87.3 | Overflow of 32-<br>bit sign bit of the<br>target position during<br>limiting                                                                             | • 32-bit sign bit of the target position overflows during limiting.                                                                                                      | • The target position reference at the limit is too large.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Er87.4 | Target position<br>exceeding maximum<br>value of mechanical<br>single-turn position in<br>rotating mode                                                  | <ul> <li>The target position exceeds<br/>the single-turn position<br/>upper/lower limit in absolute<br/>value rotation mode or<br/>single-turn rotation mode.</li> </ul> | <ul> <li>Set the target position to a value between the<br/>single-turn upper and lower limits.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ErA0.1 | Multi-turn overflow<br>fault                                                                                                                             | • The number of turns of<br>the absolute encoder in the<br>forward direction or reverse<br>direction exceeds 32767 or<br>32768, respectively.                            | • Set F31-10 to 4 to reset the fault and multi-<br>turn data, and power on the machine again.<br>Perform homing again when necessary.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ErC1.0 | Excessive EtherCAT<br>synchronization<br>period error                                                                                                    | • The synchronization period<br>error of the controller is too<br>large.                                                                                                 | • Increase the value of the manufacturer<br>parameter C13.06. If the fault persists,<br>replace the drive.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ErC1.1 | Synchronization loss                                                                                                                                     | • The communication<br>synchronization clock is<br>configured incorrectly for<br>the master.                                                                             | • Perform the test on another master. Correct the master communication configuration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |                                                                                                                                                          | • The IN and OUT ports for<br>EtherCAT communication<br>are connected inversely.                                                                                         | <ul> <li>Connect the IN and OUT ports in the correct sequence.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| Code   | Name                                   | Cause                                                                                                                                                                           | Solution                                                                                                                                                                                                                                                                                                         |
|--------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |                                        | <ul> <li>The controller chip of the slave is damaged.</li> </ul>                                                                                                                | • If the fault persists after the master is<br>replaced, use an oscilloscope to measure<br>the synchronization signal generated by the<br>slave controller chip. If there is no signal,<br>the slave controller chip is damaged. Return<br>to factory for repair or replace the controller<br>chip of the slave. |
|        |                                        | • The MCU pin is damaged.                                                                                                                                                       | • Use an oscilloscope to measure the<br>synchronization signal generated by the<br>slave controller chip. If there is signal, the<br>MCU chip pin is damaged. Return to factory<br>for repair or replace the MCU chip.                                                                                           |
| ErC1.2 | Network status<br>switchover error     | <ul> <li>Master malfunction or<br/>manual malfunction occurs.</li> </ul>                                                                                                        | <ul> <li>Check the network status switchover program of the host controller.</li> <li>Use a shielded twisted-pair communication cable.</li> <li>Ground the servo drive according to the standard.</li> <li>Check the network connection status according to the LED.</li> </ul>                                  |
| ErC1.4 | Network cable<br>connection unreliable | • The physical connection of<br>the data link is unstable, or<br>the process data is lost due<br>to network cable connection<br>and removal.                                    | • Check whether the network cable connection of the drive is reliable and firm, and whether there is severe vibration on site.                                                                                                                                                                                   |
| ErC1.5 | Data frame loss<br>protection error    | <ul> <li>Data loss occurs due to<br/>EMC interference, poor<br/>network cable quality, or<br/>poor connection.</li> </ul>                                                       | <ul> <li>Ensure reliable grounding and correct EMC.</li> <li>Check whether the network cable is the one specified by JSS-MOTOR.</li> <li>Check whether the network cable connection is reliable.</li> </ul>                                                                                                      |
| ErC1.6 | Data frame<br>forwarding error         | • An upper station has<br>detected and marked that<br>the data frame has been<br>damaged. When the data<br>frame is forwarded to the<br>current slave, an alarm is<br>reported. | <ul> <li>Ensure reliable grounding and correct EMC.</li> <li>Check whether the network cable is the one specified by JSS-MOTOR.</li> <li>Check whether the network cable connection is reliable.</li> </ul>                                                                                                      |
| ErC1.7 | Data update timeout                    | • The data frame has been<br>lost or discarded at an<br>upper station or the master<br>performance is poor.                                                                     | • Check whether the load of the master CPU is excessive. Change the sync signal offset value.                                                                                                                                                                                                                    |
| ErC1.8 | Watchdog expired                       | • The master configuration is incorrect.                                                                                                                                        | • Modify the watchdog configuration of the host controller.                                                                                                                                                                                                                                                      |

| Code   | Name                                                             | Cause                                                                                                                                                                                                                                  | Solution                                                                                                                                                                                     |
|--------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ErC2.0 | SYNC signal loss                                                 | • The physical connection of<br>the data link is unstable, or<br>the process data is lost due<br>to network cable connection<br>and removal.                                                                                           | <ul> <li>Replace the network cable with a more<br/>reliable one. If the fault persists, contact<br/>technical support.</li> </ul>                                                            |
| ALF0.0 | Emergency stop alarm                                             | • Check whether the logic<br>of the DI allocated with<br>function 4 (Emergency stop)<br>is valid.                                                                                                                                      | <ul> <li>Check the operation mode and clear DI<br/>emergency stop valid signal when safety is<br/>guaranteed.</li> </ul>                                                                     |
| ALF1.0 | Re-power-on required<br>for parameter settings<br>to take effect | <ul> <li>Modifications of some<br/>servo drive parameters take<br/>effect only after the servo<br/>drive is powered on again.<br/>After these parameters are<br/>modified, the servo drive<br/>reminds users to restart it.</li> </ul> | <ul> <li>Power on the device again.</li> </ul>                                                                                                                                               |
| ALF1.2 | Torque reached<br>parameter error                                | • In torque control mode, the DO setting for torque reach is invalid.                                                                                                                                                                  | • Set the torque output when torque reached<br>DO signal turned on to be greater than torque<br>output when torque reached DO signal<br>turned off. Set C03.4A to be greater than<br>C03.4B. |
| ALF1.3 | Too frequent writing<br>of EEPROM by host<br>controller SDO      | <ul> <li>A large number of<br/>parameters are modified and<br/>saved frequently.</li> </ul>                                                                                                                                            | • Do not frequently write parameters into<br>cloud platform EEPROM on the host<br>controller.                                                                                                |
| ALF2.0 | Forward overtravel alarm                                         | • The positive limit (PL) DI is active.                                                                                                                                                                                                | • Run the motor in the reverse direction to the restricted range.                                                                                                                            |
|        |                                                                  | • The drive position feedback<br>is at the forward software<br>position limit.                                                                                                                                                         | <ul> <li>Run the motor in the reverse direction to<br/>the re-stricted range or increase the positive<br/>software position limit.</li> </ul>                                                |
|        |                                                                  | • The home offset setting exceeds the software position limit.                                                                                                                                                                         | • Set the home offset within the software position limit range.                                                                                                                              |
| ALF2.1 | Reverse overtravel alarm                                         | • The negative limit (NL) DI is active.                                                                                                                                                                                                | • Run the motor in the forward direction to the restricted range.                                                                                                                            |
|        |                                                                  | • The drive position feedback<br>is at the reverse software<br>position limit.                                                                                                                                                         | <ul> <li>Run the motor in the forward direction to<br/>the restricted range or decrease the positive<br/>software position limit.</li> </ul>                                                 |
|        |                                                                  | • The home offset setting<br>exceeds the software<br>position limit.                                                                                                                                                                   | <ul> <li>Set the home offset within the software position limit range.</li> </ul>                                                                                                            |

| Code   | Name                         | Cause                                                                                                                                                                                                | Solution                                                                                                                                                                                                                                                                                                |
|--------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ALF4.0 | Homing timeout               | • The homing time exceeds the setpoint.                                                                                                                                                              | <ul> <li>Appropriately adjust the homing speed and<br/>homing time, and ensure that the external<br/>home signal connection is reliable (if used).</li> </ul>                                                                                                                                           |
| ALF4.1 | Homing DI conflict           | • During homing, both the forward and reverse limits are valid or both the home signal and limit signal are valid.                                                                                   | • Check whether the home signal and limit signal are correct.                                                                                                                                                                                                                                           |
| ALF4.2 | Homing mode<br>conflict      | • The homing mode is set incorrectly.                                                                                                                                                                | • Check whether the homing mode set<br>in object dictionary 6098h on the host<br>controller is correct.                                                                                                                                                                                                 |
| ALF5.0 | Braking resistor<br>overload | • The cable connected to the<br>external braking resistor is in<br>poor contact, disconnected,<br>or broken.                                                                                         | <ul> <li>Connect the external braking resistor between P<sup>⊕</sup> and C with a new cable.</li> <li>Replace the external braking resistor with a new one. Ensure that the resistance measured is the same as the nominal value, and then connect the resistor between P<sup>⊕</sup> and C.</li> </ul> |
|        |                              | <ul> <li>The resistance of the<br/>external braking resistor<br/>used is too large.</li> </ul>                                                                                                       | • Select a resistor with a proper resistance according to the specification requirements.                                                                                                                                                                                                               |
|        |                              | • The resistance setpoint is greater than the resistance of the external braking resistor used.                                                                                                      | • Set the value according to the resistance of the external bleeder resistor in use.                                                                                                                                                                                                                    |
|        |                              | • The input voltage of the main circuit is beyond the specification.                                                                                                                                 | <ul> <li>Replace or adjust the power supply<br/>according to the specifications.</li> </ul>                                                                                                                                                                                                             |
|        |                              | • The load moment of inertia ratio is too large.                                                                                                                                                     | • Select an external braking resistor with large capacity and set its resistance to the actual one.                                                                                                                                                                                                     |
|        |                              | • The motor speed is too high<br>and the deceleration process<br>is not completed within<br>the set deceleration time.<br>The motor is in continuous<br>deceleration state during<br>cyclic running. | <ul> <li>Select a servo drive with a large capacity.</li> </ul>                                                                                                                                                                                                                                         |
|        |                              | • The capacity of the servo<br>drive or the braking resistor<br>is insufficient.                                                                                                                     | <ul> <li>Reduce the load if allowed.</li> <li>Increase the acceleration/deceleration time if allowed.</li> <li>Increase the motor running cycle if allowed.</li> </ul>                                                                                                                                  |

| Code   | Name                                     | Cause                                                                                                                                                                                       | Solution                                                                                                                                                                                                                                           |
|--------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ALF5.1 | External braking<br>resistance too small | • The resistance of the<br>external braking resistor is<br>smaller than permissible<br>minimum resistance by the<br>servo drive.                                                            | • Replace with an external braking resistor<br>matching the servo drive, with the resistance<br>greater than the minimum value, and set<br>C00.10 to the resistance value.                                                                         |
| ALF6.1 | Output phase loss                        | • The output current is abnormal.                                                                                                                                                           | • Check whether the power cable is broken. If so, replace the cable.                                                                                                                                                                               |
| ALF8.0 | Vibration occurred<br>during auto-tuning | <ul> <li>Continuous vibration occurs<br/>during auto-tuning.</li> <li>The mechanical connection<br/>of the load is loose due to<br/>offset of the machinery.</li> </ul>                     | • Check the mechanical installation clearance and connection reliability.                                                                                                                                                                          |
|        |                                          | • Vibration of the load<br>with large inertia cannot<br>be suppressed. The<br>acceleration/deceleration<br>time must be increased<br>to ensure that the mo-tor<br>current is not saturated. | • Appropriately adjust the inertia auto-tuning parameters (C07.00, C07.01, C07.03, and C07.04), reduce the values of the auto-tuning speed (C07.01) and auto-tuning target torque (C07.03), and increase the number of auto-tuning turns (C07.04). |
| ALF9.0 | Encoder battery<br>voltage low           | • The encoder battery voltage is too low.                                                                                                                                                   | • Replace the encoder battery.                                                                                                                                                                                                                     |
| ALFA.0 | Drive high<br>temperature warning        | <ul> <li>Drive high temperature<br/>warning</li> </ul>                                                                                                                                      | <ul> <li>Check whether the fan is abnormal or<br/>whether the ambient temperature is too high.</li> <li>Improve the installation conditions of the<br/>servo unit to reduce the ambient temperature.</li> </ul>                                    |
| xxnr   | Servo not ready                          | <ul> <li>The voltage of the control power is too low.</li> </ul>                                                                                                                            | • Check the U40.35 parameter for the control bus voltage, and ensure that the power supply is normal.                                                                                                                                              |
|        |                                          | <ul> <li>The main circuit voltage is<br/>too low.</li> </ul>                                                                                                                                | • Check the U40.36 parameter for the primary bus voltage, and ensure that the power supply is normal.                                                                                                                                              |
|        |                                          | • The input AC signal is abnormal.                                                                                                                                                          | <ul> <li>Check the input AC power supply and the three-<br/>phase AC main power supply, and ensure that the<br/>power supply is normal.</li> </ul>                                                                                                 |
|        |                                          | • The encoder battery voltage is too low.                                                                                                                                                   | • Measure the voltage of the encoder battery.<br>If the voltage is less than 2.9 V, replace the<br>battery.                                                                                                                                        |

# Chapter 11

# **Parameter List**

## 11.1 Parameter Group Description

Parameter access address: index+subindex, both in hexadecimal format

The CiA402 protocol has the following constraints on the address of system parameters.

| Index       | Description                  |
|-------------|------------------------------|
| 0001h0FFFh  | Data type description        |
| 1000h—1FFFh | CoE communication object     |
| 2000h—5FFFh | Manufacturer specific object |
| 6000h—9FFFh | Sub-protocol object          |
| A000h—FFFFh | Reserved                     |

## 11.2 Parameter List

### 11.2.1 Common Parameters in Group 2000h

### Parameters (2000h/C00)

| Index | Param-<br>eter | Name                     | Options                                                   | Value<br>Range | Default | Unit | Data<br>Type | Modifica-<br>tion Mode | Effective<br>Time    |
|-------|----------------|--------------------------|-----------------------------------------------------------|----------------|---------|------|--------------|------------------------|----------------------|
| 01h   | C00.00         | Control mode             | 10: EtherCAT                                              | 0-10           | 10      | -    | U16          | At stop                | Immedi-<br>ately     |
| 02h   | C00.01         | Motor rotating direction | 0: CCW<br>1: CW                                           | 0-1            | 0       | -    | U16          | At stop                | Upon re-<br>power-on |
| 05h   | C00.04         | Auto-tuning<br>mode      | 0: Manual mode<br>1: Standard mode<br>2: Positioning mode | 0-2            | 1       | -    | U16          | During operation       | Immedi-<br>ately     |
| 06h   | C00.05         | Stiffness level          | -                                                         | 1-31           | 12      | -    | U16          | During operation       | Immedi-<br>ately     |
| 07h   | C00.06         | Load inertia ratio       | -                                                         | 0-12000        | 100     | %    | U16          | During operation       | Immedi-<br>ately     |

| Index | Param-<br>eter | Name                                                 | Options                                                                                                                                                                                                                                                                                                                                                 | Value<br>Range | Default | Unit | Data<br>Type | Modifica-<br>tion Mode | Effective<br>Time    |
|-------|----------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------|------|--------------|------------------------|----------------------|
| 08h   | C00.07         | Absolute mode                                        | <ul> <li>0: Incremental position<br/>mode</li> <li>1: Absolute position linear<br/>mode</li> <li>2: Absolute position linear<br/>infinite mode</li> <li>3: Absolute position single-<br/>turn mode</li> <li>4: Absolute position rotation<br/>mode</li> <li>5: Absolute mechanical<br/>single-turn mode (operating<br/>direction selectable)</li> </ul> | 0-5            | 0       | _    | U16          | At stop                | Upon re-<br>power-on |
| 11h   | C00.10         | Bleeder resistor selection                           | <ul><li>0: Internal bleeder resistor</li><li>1: External bleeder resistor</li><li>2: No bleeder resistor</li><li>3: Capacitor bleeder resistor</li></ul>                                                                                                                                                                                                | 0-3            | 0       | -    | U16          | At stop                | Immedi-<br>ately     |
| 12h   | C00.11         | Bleeder resistor<br>power                            | -                                                                                                                                                                                                                                                                                                                                                       | 1-65535        | 50      | W    | U16          | At stop                | Immedi-<br>ately     |
| 13h   | C00.12         | Bleeder resistor resistance                          | -                                                                                                                                                                                                                                                                                                                                                       | 1-65535        | 50      | Ω    | U16          | At stop                | Immedi-<br>ately     |
| 14h   | C00.13         | Bleeder resistor<br>heat dissipation<br>coeffi-cient | -                                                                                                                                                                                                                                                                                                                                                       | 1-100          | 30      | -    | U16          | During operation       | Immedi-<br>ately     |
| 15h   | C00.14         | Brake enable<br>switch                               | -                                                                                                                                                                                                                                                                                                                                                       | 0-1            | 0       | -    | U16          | At stop                | Immedi-<br>ately     |
| 17h   | C00.16         | Panel display                                        | 0: Default display<br>1: Speed display<br>2: Torque display<br>3: Voltage display<br>4: Load rate display                                                                                                                                                                                                                                               | 0-4            | 0       | -    | U16          | During operation       | Immedi-<br>ately     |
| 32h   | C00.31         | Super user                                           | -                                                                                                                                                                                                                                                                                                                                                       | 0-65535        | 0       | -    | U16          | During operation       | Immedi-<br>ately     |

# NOTICE

• For details about parameters above, refer to section 11.3.1 "Group C00".

## Basic Gain Parameters (2001h/C01)

| Index | Param-<br>eter | Name                                                             | Options                                                                                                                                       | Value<br>Range | Default | Unit     | Data<br>Type | Modifica-<br>tion Mode | Effective<br>Time |
|-------|----------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------|----------|--------------|------------------------|-------------------|
| 01h   | C01.00         | 1st position loop<br>gain                                        | -                                                                                                                                             | 0-20000        | 400     | 0.1rad/s | U16          | During operation       | Immedi-<br>ately  |
| 02h   | C01.01         | 1st speed loop gain                                              | -                                                                                                                                             | 1-20000        | 250     | 0.1Hz    | U16          | During operation       | Immedi-<br>ately  |
| 03h   | C01.02         | 1st speed loop<br>integral time<br>parameter                     | -                                                                                                                                             | 1-51200        | 3184    | 0.01ms   | U16          | During operation       | Immedi-<br>ately  |
| 04h   | C01.03         | 1st torque<br>reference filter<br>cutoff frequency               | -                                                                                                                                             | 5-16000        | 200     | Hz       | U16          | During operation       | Immedi-<br>ately  |
| 09h   | C01.08         | 2nd position loop<br>gain                                        | -                                                                                                                                             | 0-20000        | 560     | 0.1rad/s | U16          | During operation       | Immedi-<br>ately  |
| 0Ah   | C01.09         | 2nd speed loop<br>gain                                           | -                                                                                                                                             | 1-20000        | 350     | 0.1Hz    | U16          | During operation       | Immedi-<br>ately  |
| 0Bh   | C01.0A         | 2nd speed loop<br>integral time<br>parameter                     | -                                                                                                                                             | 1-51200        | 2274    | 0.01ms   | U16          | During operation       | Immedi-<br>ately  |
| 0Ch   | C01.0B         | 2nd torque<br>reference filter<br>cutoff frequency               | -                                                                                                                                             | 5-16000        | 280     | Hz       | U16          | During operation       | Immedi-<br>ately  |
| 11h   | C01.10         | Speed feedback<br>filter                                         | 0: Internal setting<br>1: Low-pass filter<br>2: Overlapping average<br>filter<br>3: Speed observer<br>4: No filter                            | 0-4            | 0       | -        | U16          | At stop                | Immedi-<br>ately  |
| 12h   | C01.11         | Cutoff frequency<br>of speed feedback<br>low-pass filter         | -                                                                                                                                             | 10-16000       | 8000    | Hz       | U16          | During operation       | Immedi-<br>ately  |
| 13h   | C01.12         | Speed feedback<br>overlapping<br>average filter time<br>constant | 0: No filter<br>1: 2 times filter<br>2: 4 times filter<br>3: 8 times filter<br>4: 16 times filter<br>5: 32 times filter<br>6: 64 times filter | 0-6            | 0       | -        | U16          | During<br>operation    | Immedi-<br>ately  |
| 14h   | C01.13         | Speed feedforward source                                         | 0: No feedforward<br>1: Internal reference<br>2: Model tracking<br>5: Communication                                                           | 0-5            | 0       | -        | U16          | During operation       | Immedi-<br>ately  |

| Index | Param-<br>eter | Name                                                                   | Options                                                                             | Value<br>Range | Default | Unit  | Data<br>Type | Modifica-<br>tion Mode | Effective<br>Time |
|-------|----------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------|---------|-------|--------------|------------------------|-------------------|
| 15h   | C01.14         | Speed feedforward percentage                                           | -                                                                                   | 0-2000         | 0       | 0.1%  | U16          | During operation       | Immedi-<br>ately  |
| 16h   | C01.15         | Speed feedforward<br>filter cutoff<br>frequency                        | -                                                                                   | 5-16000        | 318     | Hz    | U16          | During operation       | Immedi-<br>ately  |
| 17h   | C01.16         | Torque<br>feedforward<br>source                                        | 0: No feedforward<br>1: Internal reference<br>2: Model tracking<br>5: Communication | 0-5            | 0       | -     | U16          | During operation       | Immedi-<br>ately  |
| 18h   | C01.17         | Torque<br>feedforward<br>percentage                                    | -                                                                                   | 0-2000         | 0       | 0.1%  | U16          | During operation       | Immedi-<br>ately  |
| 19h   | C01.18         | Torque<br>feedforward filter<br>cutoff frequency                       | -                                                                                   | 5-16000        | 318     | Hz    | U16          | During operation       | Immedi-<br>ately  |
| 1Ch   | C01.1B         | PDFF control coefficient                                               | -                                                                                   | 0-1000         | 1000    | 0.1%  | U16          | During operation       | Immedi-<br>ately  |
| 1Dh   | C01.1C         | Damping factor<br>control coefficient                                  | -                                                                                   | 0-1000         | 0       | 0.1%  | U16          | During operation       | Immedi-<br>ately  |
| 21h   | C01.20         | Position reference<br>overlapping<br>average filter time<br>constant A | -                                                                                   | 0-1280         | 0       | 0.1ms | U16          | At stop                | Immedi-<br>ately  |
| 22h   | C01.21         | Position reference<br>overlapping<br>average filter time<br>constant B | -                                                                                   | 0-1280         | 0       | 0.1ms | U16          | At stop                | Immedi-<br>ately  |
| 23h   | C01.22         | Position reference<br>low-pass filter<br>time constant A               | -                                                                                   | 0-65535        | 0       | 0.1ms | U16          | At stop                | Immedi-<br>ately  |
| 24h   | C01.23         | Position reference<br>low-pass filter<br>time constant B               | -                                                                                   | 0-65535        | 0       | 0.1ms | U16          | At stop                | Immedi-<br>ately  |
| 25h   | C01.24         | 1st notch filter<br>frequency of<br>position reference                 | -                                                                                   | 0-2000         | 0       | 0.1Hz | U16          | At stop                | Immedi-<br>ately  |
| 26h   | C01.25         | 1st notch filter<br>width of position<br>reference                     | -                                                                                   | 0-1000         | 0       | 0.1%  | U16          | At stop                | Immedi-<br>ately  |
| 27h   | C01.26         | 1st notch filter<br>depth of position<br>reference                     | -                                                                                   | 10-1000        | 1000    | 0.1%  | U16          | At stop                | Immedi-<br>ately  |

| Index | Param-<br>eter | Name                                                     | Options                                                                                                                                                                                                                            | Value<br>Range | Default | Unit  | Data<br>Type | Modifica-<br>tion Mode | Effective<br>Time |
|-------|----------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------|-------|--------------|------------------------|-------------------|
| 28h   | C01.27         | 2nd notch filter<br>frequency of<br>position reference   | -                                                                                                                                                                                                                                  | 0-2000         | 0       | 0.1Hz | U16          | At stop                | Immedi-<br>ately  |
| 29h   | C01.28         | 2nd notch filter<br>width of position<br>reference       | -                                                                                                                                                                                                                                  | 0-1000         | 0       | 0.1%  | U16          | At stop                | Immedi-<br>ately  |
| 2Ah   | C01.29         | 2nd notch filter<br>depth of position<br>reference       | -                                                                                                                                                                                                                                  | 10-1000        | 1000    | 0.1%  | U16          | At stop                | Immedi-<br>ately  |
| 2Bh   | C01.2A         | Position reference<br>pre-charge filter<br>time constant | -                                                                                                                                                                                                                                  | 0-1280         | 0       | 0.1ms | U16          | At stop                | Immedi-<br>ately  |
| 31h   | C01.30         | Adaptive notch<br>mode                                   | 0: Disabled<br>1: 1st notch<br>2: 2nd notch<br>3: Notch parameter reset<br>4: Resonance frequency<br>tested only                                                                                                                   | 0-4            | 0       | -     | U16          | During operation       | Immedi-<br>ately  |
| 32h   | C01.31         | Adaptive notch test times                                | -                                                                                                                                                                                                                                  | 0-65535        | 0       | Times | U16          | At stop                | Immedi-<br>ately  |
| 39h   | C01.38         | Gain switchover<br>mode                                  | 0: Fixed to the 1st gain set<br>1: DI switchover<br>2: DI P-PI switchover<br>3: Torque reference<br>4: Speed reference<br>5: Speed feedback<br>6: Speed reference change<br>rate<br>7: Position deviation<br>8: Position reference | 0-8            | 0       | -     | U16          | At stop                | Immedi-<br>ately  |
| 3Ah   | C01.39         | Gain switchover<br>time                                  | -                                                                                                                                                                                                                                  | 10-10000       | 50      | 0.1ms | U16          | During operation       | Immedi-<br>ately  |
| 3Bh   | C01.3A         | Gain switchover<br>threshold                             | -                                                                                                                                                                                                                                  | 0-65535        | 10      | -     | U16          | During operation       | Immedi-<br>ately  |
| 3Ch   | C01.3B         | Gain switchover<br>loop width                            | -                                                                                                                                                                                                                                  | 0-65535        | 10      | -     | U16          | During operation       | Immedi-<br>ately  |
| 41h   | C01.40         | Frequency of the<br>1st notch                            | -                                                                                                                                                                                                                                  | 10-8000        | 8000    | Hz    | U16          | During operation       | Immedi-<br>ately  |
| 42h   | C01.41         | Width level of the<br>1st notch                          | -                                                                                                                                                                                                                                  | 0-4000         | 0       | 0.1%  | U16          | During operation       | Immedi-<br>ately  |
| 43h   | C01.42         | Depth level of the<br>1st notch                          | -                                                                                                                                                                                                                                  | 10-1000        | 1000    | 0.1%  | U16          | During operation       | Immedi-<br>ately  |

| Index | Param-<br>eter | Name                            | Options | Value<br>Range | Default | Unit | Data<br>Type | Modifica-<br>tion Mode | Effective<br>Time |
|-------|----------------|---------------------------------|---------|----------------|---------|------|--------------|------------------------|-------------------|
| 44h   | C01.43         | Frequency of the 2nd notch      | -       | 10-8000        | 8000    | Hz   | U16          | During operation       | Immedi-<br>ately  |
| 45h   | C01.44         | Width level of the 2nd notch    | -       | 0-4000         | 0       | 0.1% | U16          | During operation       | Immedi-<br>ately  |
| 46h   | C01.45         | Depth level of the<br>2nd notch | -       | 10-1000        | 1000    | 0.1% | U16          | During operation       | Immedi-<br>ately  |
| 47h   | C01.46         | Frequency of the<br>3rd notch   | -       | 10-8000        | 8000    | Hz   | U16          | During operation       | Immedi-<br>ately  |
| 48h   | C01.47         | Width level of the 3rd notch    | -       | 0-4000         | 0       | 0.1% | U16          | During operation       | Immedi-<br>ately  |
| 49h   | C01.48         | Depth level of the<br>3rd notch | -       | 10-1000        | 1000    | 0.1% | U16          | During operation       | Immedi-<br>ately  |
| 4Ah   | C01.49         | Frequency of the<br>4th notch   | -       | 10-8000        | 8000    | Hz   | U16          | During operation       | Immedi-<br>ately  |
| 4Bh   | C01.4A         | Width level of the<br>4th notch | -       | 0-4000         | 0       | 0.1% | U16          | During operation       | Immedi-<br>ately  |
| 4Ch   | C01.4B         | Depth level of the<br>4th notch | -       | 10-1000        | 1000    | 0.1% | U16          | During operation       | Immedi-<br>ately  |
| 4Dh   | C01.4C         | Frequency of the<br>5th notch   | -       | 10-8000        | 8000    | Hz   | U16          | During operation       | Immedi-<br>ately  |
| 4Eh   | C01.4D         | Width level of the<br>5th notch | -       | 0-4000         | 0       | 0.1% | U16          | During operation       | Immedi-<br>ately  |
| 4Fh   | C01.4E         | Depth level of the<br>5th notch | -       | 10-1000        | 1000    | 0.1% | U16          | During operation       | Immedi-<br>ately  |

## NOTICE

• For details about parameters above, refer to section 11.3.2 "Group C01".

## Advanced Gain Parameters (2002h/C02)

| Index | Param-<br>eter | Name                           | Options                                         | Value<br>Range | Default | Unit     | Data<br>Type | Modifica-<br>tion Mode | Effective<br>Time |
|-------|----------------|--------------------------------|-------------------------------------------------|----------------|---------|----------|--------------|------------------------|-------------------|
| 01h   | C02.00         | Model tracking control         | 0: Disabled<br>1: Single mass model<br>tracking | 0-1            | 0       | -        | U16          | At stop                | Immedi-<br>ately  |
| 02h   | C02.01         | Model tracking<br>control gain | -                                               | 10-20000       | 500     | 0.1rad/s | U16          | During operation       | Immedi-<br>ately  |

| Index | Param-<br>eter | Name                                                                    | Options | Value<br>Range | Default | Unit  | Data<br>Type | Modifica-<br>tion Mode | Effective<br>Time |
|-------|----------------|-------------------------------------------------------------------------|---------|----------------|---------|-------|--------------|------------------------|-------------------|
| 03h   | C02.02         | Model tracking<br>inertia correction<br>coefficient                     | -       | 10-8000        | 1000    | 0.1%  | U16          | During operation       | Immedi-<br>ately  |
| 31h   | C02.30         | Speed observer gain                                                     | -       | 0-40000        | 0       | 0.1Hz | U16          | During operation       | Immedi-<br>ately  |
| 32h   | C02.31         | Speed observer inertia correction                                       | -       | 10-8000        | 1000    | 0.1%  | U16          | During operation       | Immedi-<br>ately  |
| 33h   | C02.32         | Speed observer<br>speed feedback<br>cutoff frequency                    | -       | 0-16000        | 0       | Hz    | U16          | During operation       | Immedi-<br>ately  |
| 39h   | C02.38         | Frequency<br>for vibration<br>suppression 1                             | -       | 10-20000       | 1000    | 0.1Hz | U16          | During operation       | Immedi-<br>ately  |
| 3Ah   | C02.39         | Inertia correction<br>for vibration<br>suppression 1                    | -       | 10-8000        | 1000    | 0.1%  | U16          | During operation       | Immedi-<br>ately  |
| 3Bh   | C02.3A         | Low-pass filter<br>correction<br>for vibration<br>suppression 1         | -       | -9999-9999     | 0       | 0.1Hz | I16          | During operation       | Immedi-<br>ately  |
| 3Ch   | C02.3B         | Correction of<br>high-pass filter 1<br>for vibration sup-<br>pression 1 | -       | -9999-9999     | 0       | 0.1Hz | I16          | During operation       | Immedi-<br>ately  |
| 3Dh   | C02.3C         | Frequency of<br>high-pass filter 2<br>for vibration sup-<br>pression 1  | -       | 10-50000       | 20000   | 0.1Hz | U16          | During operation       | Immedi-<br>ately  |
| 3Eh   | C02.3D         | Ratio of<br>compensation<br>1 for vibration<br>suppression 1            | -       | 0-20000        | 0       | 0.1%  | U16          | During operation       | Immedi-<br>ately  |
| 3Fh   | C02.3E         | Ratio of<br>compensation<br>2 for vibration<br>suppression 1            | -       | 0-20000        | 0       | 0.1%  | U16          | During operation       | Immedi-<br>ately  |
| 41h   | C02.40         | Frequency<br>for vibration<br>suppression 2                             | -       | 10-20000       | 1000    | 0.1Hz | U16          | During operation       | Immedi-<br>ately  |

| Index | Param-<br>eter | Name                                                                    | Options | Value<br>Range | Default | Unit  | Data<br>Type | Modifica-<br>tion Mode | Effective<br>Time |
|-------|----------------|-------------------------------------------------------------------------|---------|----------------|---------|-------|--------------|------------------------|-------------------|
| 42h   | C02.41         | Inertia correction<br>for vibration<br>suppression 2                    | -       | 10-8000        | 1000    | 0.1%  | U16          | During operation       | Immedi-<br>ately  |
| 43h   | C02.42         | Low-pass filter<br>correction<br>for vibration<br>suppression 2         | -       | -9999-9999     | 0       | 0.1Hz | 116          | During operation       | Immedi-<br>ately  |
| 44h   | C02.43         | Correction of<br>high-pass filter 1<br>for vibration sup-<br>pression 2 | -       | -9999-9999     | 0       | 0.1Hz | 116          | During operation       | Immedi-<br>ately  |
| 45h   | C02.44         | Frequency of<br>high-pass filter 2<br>for vibration sup-<br>pression 2  | -       | 10-50000       | 20000   | 0.1Hz | U16          | During operation       | Immedi-<br>ately  |
| 46h   | C02.45         | Ratio of<br>compensation<br>1 for vibration<br>suppression 2            | -       | 0-20000        | 0       | 0.1%  | U16          | During operation       | Immedi-<br>ately  |
| 47h   | C02.46         | Ratio of<br>compensation<br>2 for vibration<br>suppression 2            | -       | 0-20000        | 0       | 0.1%  | U16          | During operation       | Immedi-<br>ately  |
| 49h   | C02.48         | Frequency<br>for vibration<br>suppression 3                             | -       | 10-20000       | 1000    | 0.1Hz | U16          | During operation       | Immedi-<br>ately  |
| 4Ah   | C02.49         | Inertia correction<br>for vibration<br>suppression 3                    | -       | 10-8000        | 1000    | 0.1%  | U16          | During operation       | Immedi-<br>ately  |
| 4Bh   | C02.4A         | Low-pass filter<br>correction<br>for vibration<br>suppression 3         | -       | -9999-9999     | 0       | 0.1Hz | I16          | During operation       | Immedi-<br>ately  |
| 4Ch   | C02.4B         | Correction of<br>high-pass filter 1<br>for vibration sup-<br>pression 3 | -       | -9999-9999     | 0       | 0.1Hz | I16          | During operation       | Immedi-<br>ately  |
| 4Dh   | C02.4C         | Frequency of<br>high-pass filter 2<br>for vibration sup-<br>pression 3  | -       | 10-50000       | 20000   | 0.1Hz | U16          | During operation       | Immedi-<br>ately  |

| Index | Param-<br>eter | Name                                                          | Options | Value<br>Range | Default | Unit   | Data<br>Type | Modifica-<br>tion Mode | Effective<br>Time |
|-------|----------------|---------------------------------------------------------------|---------|----------------|---------|--------|--------------|------------------------|-------------------|
| 4Eh   | C02.4D         | Ratio of<br>compensation<br>1 for vibration<br>suppression 3  | -       | 0-20000        | 0       | 0.1%   | U16          | During operation       | Immedi-<br>ately  |
| 4Fh   | C02.4E         | Ratio of<br>compensation<br>2 for vibration<br>suppression 3  | -       | 0-20000        | 0       | 0.1%   | U16          | During operation       | Immedi-<br>ately  |
| 61h   | C02.60         | Disturbance<br>observer gain                                  | -       | 0-40000        | 0       | 0.1Hz  | U16          | During operation       | Immedi-<br>ately  |
| 62h   | C02.61         | Disturbance<br>observer inertia<br>correction<br>coefficient  | -       | 1-10000        | 1000    | 0.1%   | U16          | During operation       | Immedi-<br>ately  |
| 63h   | C02.62         | Disturbance<br>observer low-pass<br>cutoff frequency          | -       | 0-16000        | 0       | Hz     | U16          | During operation       | Immedi-<br>ately  |
| 64h   | C02.63         | Disturbance<br>observer<br>compensation<br>torque per-centage | -       | 0-2000         | 0       | 0.1%   | U16          | During operation       | Immedi-<br>ately  |
| 69h   | C02.68         | Friction<br>compensation<br>switch and relevant<br>setting    | -       | 0-255          | 0       | -      | U16          | During operation       | Immedi-<br>ately  |
| 6Ah   | C02.69         | Friction<br>compensation<br>speed threshold                   | -       | 0-5000         | 20      | 0.1rpm | U16          | During operation       | Immedi-<br>ately  |
| 6Bh   | C02.6A         | Static friction compensation                                  | -       | 0-2000         | 0       | 0.1%   | U16          | During operation       | Immedi-<br>ately  |
| 6Ch   | C02.6B         | Forward friction<br>compensation of<br>coulomb friction       | -       | 0-2000         | 0       | 0.1%   | U16          | During operation       | Immedi-<br>ately  |
| 6Dh   | C02.6C         | Reverse friction<br>compensation of<br>coulomb friction       | -       | -2000-0        | 0       | 0.1%   | I16          | During operation       | Immedi-<br>ately  |
| 6Eh   | C02.6D         | Viscous friction<br>torque for rated<br>speed                 | -       | 0-2000         | 0       | 0.1%   | U16          | During operation       | Immedi-<br>ately  |

| Index | Param-<br>eter | Name                                                    | Options | Value<br>Range | Default | Unit   | Data<br>Type | Modifica-<br>tion Mode | Effective<br>Time |
|-------|----------------|---------------------------------------------------------|---------|----------------|---------|--------|--------------|------------------------|-------------------|
| 6Fh   | C02.6E         | Friction<br>compensation filter<br>time                 | -       | 0-65535        | 0       | 0.01ms | U16          | During operation       | Immedi-<br>ately  |
| 70h   | C02.6F         | Friction<br>compensation<br>threshold for zero<br>speed | -       | 0-1000         | 10      | 0.1rpm | U16          | During operation       | Immedi-<br>ately  |

## Instruction Parameters (2003h/C03)

| Index | Param-<br>eter | Name                                | Options | Value<br>Range | Default | Unit | Data<br>Type | Modifica-<br>tion Mode | Effective<br>Time |
|-------|----------------|-------------------------------------|---------|----------------|---------|------|--------------|------------------------|-------------------|
| 22h   | C03.21         | Speed reference                     | -       | -8000-8000     | 100     | rpm  | 116          | During operation       | Immedi-<br>ately  |
| 23h   | C03.22         | Acceleration rate                   | -       | 0-3600000      | 10      | ms   | U32          | During operation       | Immedi-<br>ately  |
| 25h   | C03.24         | Deceleration rate                   | -       | 0-3600000      | 10      | ms   | U32          | During operation       | Immedi-<br>ately  |
| 28h   | C03.27         | Internal positive speed<br>limit    | -       | 0-8000         | 6000    | rpm  | U16          | During operation       | Immedi-<br>ately  |
| 29h   | C03.28         | Internal negative speed<br>limit    | -       | 0-8000         | 6000    | rpm  | U16          | During operation       | Immedi-<br>ately  |
| 2Ch   | C03.2B         | Speed reach threshold               | -       | 0-8000         | 1000    | rpm  | U16          | During operation       | Immedi-<br>ately  |
| 2Dh   | C03.2C         | Speed synchronization threshold     | -       | 0-1000         | 10      | rpm  | U16          | During operation       | Immedi-<br>ately  |
| 2Eh   | C03.2D         | Speed rotation threshold            | -       | 0-1000         | 20      | rpm  | U16          | During operation       | Immedi-<br>ately  |
| 2Fh   | C03.2E         | Zero speed output<br>threshold      | -       | 0-1000         | 10      | rpm  | U16          | During operation       | Immedi-<br>ately  |
| 42h   | C03.41         | Torque reference                    | -       | -4000-4000     | 0       | 0.1% | I16          | During operation       | Immedi-<br>ately  |
| 44h   | C03.43         | Internal positive torque limit      | -       | 0-4000         | 3000    | 0.1% | U16          | During operation       | Immedi-<br>ately  |
| 45h   | C03.44         | Internal negative torque limit      | -       | 0-4000         | 3000    | 0.1% | U16          | During operation       | Immedi-<br>ately  |
| 48h   | C03.47         | Positive speed limit in torque mode | -       | 0-8000         | 3000    | rpm  | U16          | During operation       | Immedi-<br>ately  |

| Index | Param-<br>eter | Name                                | Options | Value<br>Range | Default | Unit | Data<br>Type | Modifica-<br>tion Mode | Effective<br>Time |
|-------|----------------|-------------------------------------|---------|----------------|---------|------|--------------|------------------------|-------------------|
| 49h   | C03.48         | Negative speed limit in torque mode | -       | 0-8000         | 3000    | rpm  | U16          | During operation       | Immedi-<br>ately  |
| 4Ah   | C03.49         | Reference value for<br>torque reach | -       | 0-4000         | 0       | 0.1% | U16          | During operation       | Immedi-<br>ately  |
| 4Bh   | C03.4A         | Valid value for torque reached      | -       | 0-4000         | 200     | 0.1% | U16          | During operation       | Immedi-<br>ately  |
| 4Ch   | C03.4B         | Invalid value for torque reached    | -       | 0-4000         | 100     | 0.1% | U16          | During operation       | Immedi-<br>ately  |

• For details about parameters above, refer to section 11.3.3 "Group C03".

# I/O Parameters (2004h/C04)

| Index | Param-<br>eter | Name                      | Options                                                                                                                                                              | Value<br>Range | Default | Unit   | Data<br>Type | Modifica-<br>tion Mode | Effective<br>Time |
|-------|----------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------|--------|--------------|------------------------|-------------------|
| 01h   | C04.00         | DI1 function<br>selection | 0: No definition<br>1: S-ON<br>2: Fault reset<br>4: Emergency stop<br>5: Home switch<br>6: Forward overtravel<br>7: Reverse overtravel<br>30: Probe 1<br>31: Probe 2 | 0-32           | 6       | -      | U16          | At stop                | Immedi-<br>ately  |
| 02h   | C04.01         | DI1 logic selection       | 0: Active low<br>1: Active high                                                                                                                                      | 0-1            | 0       | -      | U16          | During operation       | Immedi-<br>ately  |
| 03h   | C04.02         | DI1 filter time           | -                                                                                                                                                                    | 0-65535        | 150     | 0.01ms | U16          | During operation       | Immedi-<br>ately  |
| 05h   | C04.04         | DI2 function<br>selection | 0: No definition<br>1: S-ON<br>2: Fault reset<br>4: Emergency stop<br>5: Home switch<br>6: Forward overtravel<br>7: Reverse overtravel<br>30: Probe 1<br>31: Probe 2 | 0-32           | 7       | -      | U16          | At stop                | Immedi-<br>ately  |
| 06h   | C04.05         | DI2 logic selection       | 0: Active low<br>1: Active high                                                                                                                                      | 0-1            | 0       | -      | U16          | During operation       | Immedi-<br>ately  |

| Index | Param-<br>eter | Name                      | Options                                                                                                                                                              | Value<br>Range | Default | Unit   | Data<br>Type | Modifica-<br>tion Mode | Effective<br>Time |
|-------|----------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------|--------|--------------|------------------------|-------------------|
| 07h   | C04.06         | DI2 filter time           | -                                                                                                                                                                    | 0-65535        | 150     | 0.01ms | U16          | During operation       | Immedi-<br>ately  |
| 09h   | C04.08         | DI3 function<br>selection | 0: No definition<br>1: S-ON<br>2: Fault reset<br>4: Emergency stop<br>5: Home switch<br>6: Forward overtravel<br>7: Reverse overtravel<br>30: Probe 1<br>31: Probe 2 | 0-32           | 5       | -      | U16          | At stop                | Immedi-<br>ately  |
| 0Ah   | C04.09         | DI3 logic selection       | 0: Active low<br>1: Active high                                                                                                                                      | 0-1            | 0       | -      | U16          | During operation       | Immedi-<br>ately  |
| 0Bh   | C04.0A         | DI3 filter time           | -                                                                                                                                                                    | 0-65535        | 150     | 0.01ms | U16          | During operation       | Immedi-<br>ately  |
| 0Dh   | C04.0C         | DI4 function<br>selection | 0: No definition<br>1: S-ON<br>2: Fault reset<br>4: Emergency stop<br>5: Home switch<br>6: Forward overtravel<br>7: Reverse overtravel<br>30: Probe 1<br>31: Probe 2 | 0-32           | 31      | -      | U16          | At stop                | Immedi-<br>ately  |
| 0Eh   | C04.0D         | DI4 logic selection       | 0: Active low<br>1: Active high                                                                                                                                      | 0-1            | 0       | -      | U16          | During operation       | Immedi-<br>ately  |
| 0Fh   | C04.0E         | DI4 filter time           | -                                                                                                                                                                    | 0-65535        | 150     | 0.01ms | U16          | During operation       | Immedi-<br>ately  |
| 11h   | C04.10         | DI5 function<br>selection | 0: No definition<br>1: S-ON<br>2: Fault reset<br>4: Emergency stop<br>5: Home switch<br>6: Forward overtravel<br>7: Reverse overtravel<br>30: Probe 1<br>31: Probe 2 | 0-32           | 30      | -      | U16          | At stop                | Immedi-<br>ately  |
| 12h   | C04.11         | DI5 logic selection       | 0: Active low<br>1: Active high                                                                                                                                      | 0-1            | 0       | -      | U16          | During operation       | Immedi-<br>ately  |
| 13h   | C04.12         | DI5 filter time           | -                                                                                                                                                                    | 0-65535        | 150     | 0.01ms | U16          | During operation       | Immedi-<br>ately  |

| Index | Param-<br>eter | Name                      | Options                                                                                                                      | Value<br>Range | Default | Unit | Data<br>Type | Modifica-<br>tion Mode | Effective<br>Time |
|-------|----------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------|---------|------|--------------|------------------------|-------------------|
| 31h   | C04.30         | DO1 function<br>selection | 0: No definition<br>1: Servo ready<br>2: Motor rotation<br>9: Brake output<br>10: Alarm<br>11: Fault<br>32: EDM safety state | 0-20           | 1       | -    | U16          | At stop                | Immedi-<br>ately  |
| 32h   | C04.31         | DO1 logic<br>selection    | 0: Active low<br>1: Active high                                                                                              | 0-1            | 0       | -    | U16          | During operation       | Immedi-<br>ately  |
| 33h   | C04.32         | DO2 function selection    | 0: No definition<br>1: Servo ready<br>2: Motor rotation<br>9: Brake output<br>10: Alarm<br>11: Fault<br>32: EDM safety state | 0-20           | 4       | -    | U16          | At stop                | Immedi-<br>ately  |
| 34h   | C04.33         | DO2 logic selection       | 0: Active low<br>1: Active high                                                                                              | 0-1            | 0       | -    | U16          | During operation       | Immedi-<br>ately  |
| 35h   | C04.34         | DO3 function selection    | 0: No definition<br>1: Servo ready<br>2: Motor rotation<br>9: Brake output<br>10: Alarm<br>11: Fault<br>32: EDM safety state | 0-20           | 3       | -    | U16          | At stop                | Immedi-<br>ately  |
| 36h   | C04.35         | DO3 logic<br>selection    | 0: Active low<br>1: Active high                                                                                              | 0-1            | 0       | -    | U16          | During operation       | Immedi-<br>ately  |

# Stop Mode (2005h/C05)

| Index | Param-<br>eter | Name                                                   | Options                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Value<br>Range | Default | Unit | Data<br>Type | Modifica-<br>tion Mode | Effective<br>Time |
|-------|----------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------|------|--------------|------------------------|-------------------|
| 03h   | C05.02         | Stop mode at<br>overtravel                             | <ul> <li>0: Coast to stop, keeping de-energized status</li> <li>1: Stop at zero speed, keeping position lock status</li> <li>2: Stop at zero speed, keeping de-energized status</li> <li>3: Ramp to stop as defined by 6085h, keeping de-energized status</li> <li>4: Ramp to stop as defined by 6085h, keeping position lock status</li> <li>5: Dynamic braking stop, keeping de-energized status</li> <li>6: Dynamic braking stop, keeping dynamic braking status</li> <li>7: Not responding to overtravel</li> </ul> | 0-7            | 1       | _    | U16          | At stop                | Immedi-<br>ately  |
| 04h   | C05.03         | Stop mode at<br>No. 1 fault                            | <ul> <li>0: Coast to stop, keeping<br/>de-energized status</li> <li>1: Dynamic braking stop,<br/>keeping de-energized<br/>status</li> <li>2: Dynamic braking stop,<br/>keeping dynamic braking<br/>status</li> </ul>                                                                                                                                                                                                                                                                                                    | 0-2            | 2       | -    | U16          | At stop                | Immedi-<br>ately  |
| 0Dh   | C05.0C         | Limit for stop at<br>emergency-stop<br>torque          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0-3000         | 1000    | 0.1% | U16          | During operation       | Immedi-<br>ately  |
| 0Eh   | C05.0D         | Maximum<br>downtime                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0-65535        | 10000   | ms   | U16          | At stop                | Immedi-<br>ately  |
| 11h   | C05.10         | Delay from<br>brake close<br>to motor de-<br>energized | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0-65535        | 100     | ms   | U16          | During operation       | Immedi-<br>ately  |
| 12h   | C05.11         | Speed threshold at brake closing                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10-3000        | 30      | rpm  | U16          | During operation       | Immedi-<br>ately  |

| Index | Param-<br>eter | Name                                                         | Options | Value<br>Range | Default | Unit | Data<br>Type | Modifica-<br>tion Mode | Effective<br>Time |
|-------|----------------|--------------------------------------------------------------|---------|----------------|---------|------|--------------|------------------------|-------------------|
| 13h   | C05.12         | Maximum<br>waiting time<br>with S-ON off at<br>brake closing | -       | 0-65535        | 100     | ms   | U16          | During operation       | Immedi-<br>ately  |
| 14h   | C05.13         | Delay from<br>brake on to<br>command<br>received             | -       | 0-65535        | 100     | ms   | U16          | At stop                | Immedi-<br>ately  |
| 15h   | C05.14         | Energizing delay<br>of DB relay                              | -       | 0-65535        | 20      | ms   | U16          | At stop                | Immedi-<br>ately  |

• For details about parameters above, refer to section 11.3.4 "Group C05".

## Protection Parameters (2006h/C06)

| Index | Param-<br>eter | Name                                      | Options                                              | Value<br>Range                  | Default            | Unit                | Data<br>Type | Modifica-<br>tion Mode | Effective<br>Time |
|-------|----------------|-------------------------------------------|------------------------------------------------------|---------------------------------|--------------------|---------------------|--------------|------------------------|-------------------|
| 04h   | C06.03         | Threshold of<br>excessive speed           | -                                                    | 0-9000                          | 0                  | rpm                 | U16          | During operation       | Immedi-<br>ately  |
| 05h   | C06.04         | Input phase loss detection                | 0: Enabled<br>1: Disabled                            | 0-1                             | 0                  | -                   | U16          | At stop                | Immedi-<br>ately  |
| 06h   | C06.05         | Retentive at power failure                | 0: Non-retentive<br>1: Retentive                     | 0-1                             | 0                  | -                   | U16          | At stop                | Immedi-<br>ately  |
| 08h   | C06.07         | Mechanical limit position                 | 0: Inactive<br>1: Enabled<br>2: Enabled after homing | 0-2                             | 0                  | -                   | U16          | During operation       | Immedi-<br>ately  |
| 09h   | C06.08         | Mechanical PL                             | -                                                    | $-2^{31}$ -(2 <sup>31</sup> -1) | 2 <sup>31</sup> -1 | Unit in application | I32          | During operation       | Immedi-<br>ately  |
| 0Bh   | C06.0A         | Mechanical NL                             | -                                                    | $-2^{31}$ -<br>( $2^{31}$ -1)   | -2 <sup>31</sup>   | Unit in application | 132          | During operation       | Immedi-<br>ately  |
| 11h   | C06.10         | Drive overload<br>protection<br>threshold | -                                                    | 0-3500                          | 1150               | 0.1%                | U16          | At stop                | Immedi-<br>ately  |
| 12h   | C06.11         | Motor overload<br>protection<br>threshold | -                                                    | 0-3500                          | 1150               | 0.1%                | U16          | At stop                | Immedi-<br>ately  |

| Index | Param-<br>eter | Name                                                     | Options                   | Value<br>Range | Default | Unit | Data<br>Type | Modifica-<br>tion Mode | Effective<br>Time |
|-------|----------------|----------------------------------------------------------|---------------------------|----------------|---------|------|--------------|------------------------|-------------------|
| 13h   | C06.12         | Motor locked-rotor detection                             | 0: Inactive<br>1: Enabled | 0-1            | 1       | -    | U16          | At stop                | Immedi-<br>ately  |
| 14h   | C06.13         | Motor locked-rotor detection time                        | -                         | 0-3000         | 200     | ms   | U16          | At stop                | Immedi-<br>ately  |
| 15h   | C06.14         | Motor locked-rotor detection speed                       | -                         | 0-1000         | 10      | rpm  | U16          | During operation       | Immedi-<br>ately  |
| 16h   | C06.15         | Output phase loss detection                              | 0: Inactive<br>1: Enabled | 0-1            | 0       | -    | U16          | At stop                | Immedi-<br>ately  |
| 1Dh   | C06.1C         | Encoder<br>communication<br>fault tolerance<br>threshold | -                         | 0-88           | 3       | -    | U16          | At stop                | Immedi-<br>ately  |
| 21h   | C06.20         | Protection from<br>out of control                        | 0: Inactive<br>1: Enabled | 0-1            | 1       | -    | U16          | At stop                | Immedi-<br>ately  |

• For details about parameters above, refer to section 11.3.5 "Group C06".

## Auto-tuning Parameters (2007h/C07)

| Index | Param-<br>eter | Name                                                                      | Options | Value<br>Range | Default | Unit  | Data<br>Type | Modifica-<br>tion Mode | Effective<br>Time |
|-------|----------------|---------------------------------------------------------------------------|---------|----------------|---------|-------|--------------|------------------------|-------------------|
| 01h   | C07.00         | Offline inertia auto-<br>tuning mode setting                              | -       | 0-785          | 769     | -     | U16          | At stop                | Immedi-<br>ately  |
| 02h   | C07.01         | Offline inertia auto-<br>tuning speed reference                           | -       | 50-1000        | 500     | rpm   | U16          | At stop                | Immedi-<br>ately  |
| 03h   | C07.02         | Acceleration/<br>Deceleration time for<br>offline inertia auto-<br>tuning | -       | 0-65535        | 100     | ms    | U16          | At stop                | Immedi-<br>ately  |
| 04h   | C07.03         | Offline inertia auto-<br>tuning target torque                             | -       | 1-1500         | 150     | 0.1%  | U16          | At stop                | Immedi-<br>ately  |
| 05h   | C07.04         | Offline inertia auto-<br>tuning revolutions                               | -       | 10-65535       | 200     | 0.01r | U16          | At stop                | Immedi-<br>ately  |

# Communication Parameters (200Ah/C0A)

| Index | Param-<br>eter | Name                                                        | Options                                                                                                                                                                       | Value<br>Range | Default | Unit | Data<br>Type | Modifica-<br>tion Mode | Effective<br>Time    |
|-------|----------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------|------|--------------|------------------------|----------------------|
| 09h   | C0A.08         | Commissioning<br>software<br>communication<br>station ID    | -                                                                                                                                                                             | 1-255          | 1       | -    | U16          | At stop                | Immedi-<br>ately     |
| 0Ah   | C0A.09         | Commissioning<br>software<br>communication<br>baud rate     | 0: 1200bps<br>1: 2400bps<br>2: 4800bps<br>3: 9600bps<br>4: 19200bps<br>5: 38400bps<br>6: 57600bps<br>7: 115200bps                                                             | 0-7            | 7       | -    | U16          | At stop                | Upon re-<br>power-on |
| 0Bh   | C0A.0A         | Commissioning<br>software<br>communication<br>format        | 0: No parity, 1 stop bit<br>1: Odd parity, 1 stop bit<br>2: Even parity, 1 stop bit<br>3: No parity, 2 stop bits<br>4: Odd parity, 2 stop bits<br>5: Even parity, 2 stop bits | 0-5            | 0       | -    | U16          | At stop                | Upon re-<br>power-on |
| 0Ch   | C0A.0B         | Commissioning<br>software<br>communication<br>response time | -                                                                                                                                                                             | 1-1000         | 1       | ms   | U16          | At stop                | Immedi-<br>ately     |
| 0Dh   | C0A.0C         | Commissioning<br>software<br>communication<br>timeout       | -                                                                                                                                                                             | 0-65535        | 0       | -    | U16          | Read only              | Immedi-<br>ately     |
| 0Eh   | C0A.0D         | Commissioning<br>software<br>communication<br>storage       | 0: No storage<br>1: Storage                                                                                                                                                   | 0-1            | 1       | -    | U16          | At stop                | Immedi-<br>ately     |
| 0Fh   | C0A.0E         | Commissioning<br>software data format                       | 0: Low 16 bits before<br>high 16 bits<br>1: High 16 bits before<br>low 16 bits                                                                                                | 0-1            | 0       | -    | U16          | At stop                | Immedi-<br>ately     |

# NOTICE

• For details about parameters above, refer to section 11.3.6 "Group COA".

# Homing Touch Probe Parameters (2010h/C10)

| Index | Param-<br>eter | Name                                                                                 | Options                                                                                                                                                                          | Value<br>Range                  | Default | Unit | Data<br>Type | Modifica-<br>tion Mode | Effective<br>Time    |
|-------|----------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------|------|--------------|------------------------|----------------------|
| 01h   | C10.00         | Homing enable                                                                        | 0: Inactive<br>1: Written through<br>communication<br>2: DI trigger<br>3: Current position as<br>home                                                                            | 0-3                             | 0       | -    | U16          | During<br>operation    | Immedi-<br>ately     |
| 09h   | C10.08         | Homing timeout<br>interval                                                           | -                                                                                                                                                                                | 0-(2 <sup>32</sup> -1)          | 60000   | ms   | U32          | During operation       | Immedi-<br>ately     |
| 11h   | C10.10         | Multi-turn absolute<br>position offset (low<br>32 bits)                              | -                                                                                                                                                                                | $-2^{31}$ -(2 <sup>31</sup> -1) | 0       | Р    | 132          | At stop                | Upon re-<br>power-on |
| 13h   | C10.12         | Multi-turn absolute<br>position offset (high<br>32 bits)                             | -                                                                                                                                                                                | $-2^{31}$ -(2 <sup>31</sup> -1) | 0       | Р    | 132          | At stop                | Upon re-<br>power-on |
| 15h   | C10.14         | Multi-turn<br>revolutions data<br>offset                                             | -                                                                                                                                                                                | 0-65535                         | 0       | Rev  | U16          | Read only              | Immedi-<br>ately     |
| 16h   | C10.15         | Multi-turn overflow<br>flag                                                          | -                                                                                                                                                                                | 0-1                             | 0       | -    | U16          | Read only              | Immedi-<br>ately     |
| 17h   | C10.16         | Reference running<br>mode in rotation<br>mode                                        | <ul> <li>0: Nearest</li> <li>1: Always in forward direction</li> <li>2: Always in reverse direction</li> <li>3: Always in current direction</li> <li>4: Not specified</li> </ul> | 0-4                             | 0       | -    | U16          | At stop                | Immedi-<br>ately     |
| 19h   | C10.18         | Numerator of<br>electronic gear ratio<br>in rotation mode                            | -                                                                                                                                                                                | 1-65535                         | 1       | -    | U16          | At stop                | Immedi-<br>ately     |
| 1Ah   | C10.19         | Denominator of<br>electronic gear ratio<br>in rotation mode                          | -                                                                                                                                                                                | 1-65535                         | 1       | -    | U16          | At stop                | Immedi-<br>ately     |
| 1Bh   | C10.1A         | Upper limit of<br>mechanical absolute<br>position in ro-tation<br>mode (low 32 bits) | -                                                                                                                                                                                | 0-(2 <sup>32</sup> -1)          | 0       | Р    | U32          | At stop                | Immedi-<br>ately     |

| Index | Param-<br>eter | Name                                                                                  | Options | Value<br>Range                | Default | Unit                | Data<br>Type | Modifica-<br>tion Mode | Effective<br>Time    |
|-------|----------------|---------------------------------------------------------------------------------------|---------|-------------------------------|---------|---------------------|--------------|------------------------|----------------------|
| 1Dh   | C10.1C         | Upper limit of<br>mechanical absolute<br>position in ro-tation<br>mode (high 32 bits) | -       | 0-(2 <sup>32</sup> -1)        | 0       | Р                   | U32          | At stop                | Immedi-<br>ately     |
| 1Fh   | C10.1E         | Single-turn homing<br>absolute value offset                                           | -       | $-2^{31}$ -<br>( $2^{31}$ -1) | 0       | Unit in application | I32          | At stop                | Upon re-<br>power-on |
| 31h   | C10.30         | Torque limit of<br>homing upon hit-<br>and-stop                                       | -       | 0-3000                        | 1000    | 0.1%                | U16          | During operation       | Immedi-<br>ately     |
| 32h   | C10.31         | Speed for homing<br>upon hit-and-stop                                                 | -       | 0-1000                        | 10      | rpm                 | U16          | During operation       | Immedi-<br>ately     |
| 33h   | C10.32         | Number of times for<br>homing upon hit-<br>and-stop                                   | -       | 0-65535                       | 30      | -                   | U16          | During operation       | Immedi-<br>ately     |

# EtherCAT Parameters (2013h/C13)

| Index | Param-<br>eter | Name                                                                                        | Options                   | Value<br>Range | Default | Unit | Data<br>Type | Modifica-<br>tion Mode | Effective<br>Time    |
|-------|----------------|---------------------------------------------------------------------------------------------|---------------------------|----------------|---------|------|--------------|------------------------|----------------------|
| 01h   | C13.00         | EtherCAT slave name                                                                         | -                         | 0-65535        | 0       | -    | U16          | Read only              | Immedi-<br>ately     |
| 02h   | C13.01         | EtherCAT slave alias                                                                        | -                         | 0-65535        | 0       | -    | U16          | During operation       | Immedi-<br>ately     |
| 03h   | C13.02         | EtherCAT sync loss threshold                                                                | -                         | 1-20           | 8       | -    | U16          | During operation       | Immedi-<br>ately     |
| 04h   | C13.03         | EtherCAT synchronization detection mode                                                     | -                         | 0-65535        | 0       | -    | U16          | At stop                | Immedi-<br>ately     |
| 05h   | C13.04         | EtherCAT sync loss count                                                                    | -                         | 0-65535        | 0       | -    | U16          | Read only              | Immedi-<br>ately     |
| 06h   | C13.05         | EtherCAT synchronization mode setting                                                       | -                         | 0-2            | 1       | -    | U16          | During operation       | Immedi-<br>ately     |
| 07h   | C13.06         | EtherCAT synchronization error threshold                                                    | -                         | 0-6000         | 3000    | ns   | U16          | At stop                | Immedi-<br>ately     |
| 08h   | C13.07         | Occurrence count of<br>excessive position ref-<br>erence increment in sync<br>position mode | -                         | 1-30           | 5       | -    | U16          | During operation       | Immedi-<br>ately     |
| 09h   | C13.08         | EtherCAT enhanced link selection                                                            | 0: Inactive<br>1: Enabled | 0-1            | 0       | -    | U16          | During operation       | Upon re-<br>power-on |

| Index | Param-<br>eter | Name                                                                        | Options                     | Value<br>Range | Default | Unit | Data<br>Type | Modifica-<br>tion Mode | Effective<br>Time |
|-------|----------------|-----------------------------------------------------------------------------|-----------------------------|----------------|---------|------|--------------|------------------------|-------------------|
| 0Ah   | C13.09         | Maximum errors and<br>invalid frames of<br>EtherCAT port 0 per unit<br>time | -                           | 0-65535        | 0       | -    | U16          | Read only              | Immedi-<br>ately  |
| 0Bh   | C13.0A         | Maximum errors and<br>invalid frames of<br>EtherCAT port 1 per unit<br>time | -                           | 0-65535        | 0       | -    | U16          | Read only              | Immedi-<br>ately  |
| 0Ch   | C13.0B         | Max. transfer error of<br>EtherCAT port per unit<br>time                    | -                           | 0-65535        | 0       | -    | U16          | Read only              | Immedi-<br>ately  |
| 0Dh   | C13.0C         | Max. EtherCAT data frame<br>processing unit error per<br>unit time          | -                           | 0-65535        | 0       | -    | U16          | Read only              | Immedi-<br>ately  |
| 0Eh   | C13.0D         | Max. link loss value of<br>EtherCAT port per unit<br>time                   | -                           | 0-65535        | 0       | -    | U16          | Read only              | Immedi-<br>ately  |
| 0Fh   | C13.0E         | EtherCAT state machine<br>status and port connection<br>status              | -                           | 0-65535        | 0       | -    | U16          | Read only              | Immedi-<br>ately  |
| 10h   | C13.0F         | EtherCAT AL status code                                                     | -                           | 0-65535        | 0       | -    | U16          | Read only              | Immedi-<br>ately  |
| 11h   | C13.10         | EtherCAT parameter storage                                                  | 0: No storage<br>1: Storage | 0-1            | 1       | -    | U16          | During operation       | Immedi-<br>ately  |
| 12h   | C13.11         | EtherCAT IRQ loss<br>threshold                                              | -                           | 0-10           | 5       | -    | U16          | During operation       | Immedi-<br>ately  |
| 13h   | C13.12         | EtherCAT IRQ loss count                                                     | -                           | 0-65535        | 0       | -    | U16          | Read only              | Immedi-<br>ately  |
| 1Ah   | C13.19         | Use of the loop network                                                     | -                           | 0-1            | 0       | -    | U16          | At stop                | Immedi-<br>ately  |

• For details about parameters above, refer to section 11.3.7 "Group C13".

# Motor Parameters (2020h/R20)

| Index | Param-<br>eter | Name         | Options | Value<br>Range | Default | Unit | Data<br>Type | Modifica-<br>tion Mode | Effective<br>Time    |
|-------|----------------|--------------|---------|----------------|---------|------|--------------|------------------------|----------------------|
| 01h   | R20.00         | Motor model  | -       | 0-65535        | 20000   | -    | U16          | At stop                | Upon re-<br>power-on |
| 23h   | R20.22         | Encoder type | -       | 0-65535        | 0       | -    | U16          | Read only              | Upon re-<br>power-on |

# Drive Parameters (2021h/R21)

| Index | Param-<br>eter | Name                                 | Options | Value<br>Range         | Default | Unit   | Data<br>Type | Modifica-<br>tion Mode | Effective<br>Time    |
|-------|----------------|--------------------------------------|---------|------------------------|---------|--------|--------------|------------------------|----------------------|
| 01h   | R21.00         | Drive model                          | -       | 0-65535                | 3       | -      | U16          | At stop                | Upon re-<br>power-on |
| 02h   | R21.01         | Internal drive model                 | -       | 0-65535                | 3       | -      | U16          | Read only              | Immediately          |
| 0Dh   | R21.0C         | Drive voltage class                  | -       | 0-2                    | 0       | -      | U16          | Read only              | Immediately          |
| 0Eh   | R21.0D         | Rated drive power                    | -       | $1-(2^{32}-1)$         | 40      | 0.01kW | U32          | Read only              | Immediately          |
| 10h   | R21.0F         | Rated output current of drive        | -       | 1-(2 <sup>32</sup> -1) | 280     | 0.01A  | U32          | Read only              | Immediately          |
| 12h   | R21.11         | Maximum output<br>current of drive   | -       | 1-(2 <sup>32</sup> -1) | 980     | 0.01A  | U32          | Read only              | Immediately          |
| 14h   | R21.13         | Internal bleeder resistor<br>power   | -       | 1-65535                | 40      | W      | U16          | Read only              | Immediately          |
| 15h   | R21.14         | Internal bleeder resistor resistance | -       | 1-65535                | 50      | Ω      | U16          | Read only              | Immediately          |

# NOTICE

• For details about parameters above, refer to section 11.3.8 "Group R21".

## Motor Gain Parameters (2022h/R22)

| Index | Param-<br>eter | Name                           | Options                                    | Value<br>Range | Default | Unit | Data<br>Type | Modifica-<br>tion Mode | Effective<br>Time    |
|-------|----------------|--------------------------------|--------------------------------------------|----------------|---------|------|--------------|------------------------|----------------------|
| 01h   | R22.00         | Current loop mode              | 0: Standard mode<br>1: Performance<br>mode | 0-1            | 0       | -    | U16          | At stop                | Upon re-<br>power-on |
| 02h   | R22.01         | Current loop response<br>level | -                                          | 0-4000         | 0       | 0.1% | U16          | At stop                | Upon re-<br>power-on |

| Index | Param-<br>eter | Name                                                     | Options | Value<br>Range | Default | Unit | Data<br>Type | Modifica-<br>tion Mode | Effective<br>Time |
|-------|----------------|----------------------------------------------------------|---------|----------------|---------|------|--------------|------------------------|-------------------|
| 21h   | R22.20         | MTPA field-weakening switch                              | -       | 0-65535        | 256     | -    | U16          | At stop                | Immedi-<br>ately  |
| 22h   | R22.21         | Field-weakening depth                                    | -       | 500-2000       | 1000    | 0.1% | U16          | At stop                | Immedi-<br>ately  |
| 23h   | R22.22         | Field-weakening<br>proportional gain                     | -       | 10-1000        | 100     | Hz   | U16          | At stop                | Immedi-<br>ately  |
| 24h   | R22.23         | Field-weakening integral gain                            | -       | 0-8000         | 100     | 0.1% | U16          | At stop                | Immedi-<br>ately  |
| 25h   | R22.24         | Cutoff frequency of d<br>axis current low-pass<br>filter | -       | 0-16000        | 0       | Hz   | U16          | At stop                | Immedi-<br>ately  |
| 26h   | R22.25         | Field-weakening d axis<br>current limit                  | -       | 0-3000         | 1500    | 0.1% | U16          | At stop                | Immedi-<br>ately  |
| 31h   | R22.30         | Dead zone compensation                                   | -       | 0-2000         | 1000    | 0.1% | U16          | At stop                | Immedi-<br>ately  |

# Parameters of Control in Progress (2030h/F30)

| Index | Param-<br>eter | Name                                   | Options                   | Value<br>Range                | Default | Unit                | Data<br>Type | Modifica-<br>tion Mode | Effective<br>Time |
|-------|----------------|----------------------------------------|---------------------------|-------------------------------|---------|---------------------|--------------|------------------------|-------------------|
| 01h   | F30.00         | JOG enabling in velocity mode          | -                         | 0~8000                        | 0       | -                   | U16          | During operation       | Immedi-<br>ately  |
| 02h   | F30.01         | JOG enabling in position mode          | -                         | 0~8000                        | 0       | -                   | U16          | During operation       | Immedi-<br>ately  |
| 03h   | F30.02         | JOG velocity reference                 | -                         | 0~8000                        | 100     | rpm                 | U16          | During operation       | Immedi-<br>ately  |
| 04h   | F30.03         | JOG acceleration/<br>deceleration time | -                         | 0~3600000                     | 100     | ms                  | U32          | During operation       | Immedi-<br>ately  |
| 06h   | F30.05         | JOG distance in position mode          | -                         | $-2^{31}$ -<br>( $2^{31}$ -1) | 20000   | Unit in application | 132          | During operation       | Immedi-<br>ately  |
| 11h   | F30.10         | Inertia auto-tuning selection          | 0: Disabled<br>1: Enabled | 0-65535                       | 0       | -                   | U16          | During operation       | Immedi-<br>ately  |
| 12h   | F30.11         | Initial angle auto-tuning selection    | 0: Disabled<br>1: Enabled | 0-1                           | 0       | -                   | U16          | During operation       | Immedi-<br>ately  |

# NOTICE

• For details about parameters above, refer to section 11.3.9 "Group F30".

| Index | Param-<br>eter | Name                           | Options                                                                                                                                                                                                       | Value<br>Range | Default | Unit | Data<br>Type | Modifica-<br>tion Mode | Effective<br>Time |
|-------|----------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------|------|--------------|------------------------|-------------------|
| 01h   | F31.00         | Fault reset                    | 0: Inactive<br>1: Reset                                                                                                                                                                                       | 0-1            | 0       | -    | U16          | At stop                | Immedi-<br>ately  |
| 02h   | F31.01         | Software reset                 | 0: Inactive<br>1: Reset                                                                                                                                                                                       | 0-1            | 0       | -    | U16          | At stop                | Immedi-<br>ately  |
| 03h   | F31.02         | Parameter<br>initialization    | 0: Inactive<br>1: Restore default<br>settings of parameters<br>2: Restore default<br>settings of the object<br>dictionary                                                                                     | 0-2            | 0       | -    | U16          | At stop                | Immedi-<br>ately  |
| 04h   | F31.03         | Drive motor<br>parameter reset | 0: Inactive<br>1: Factory reset drive<br>parameters<br>2: Factory reset motor<br>parameters                                                                                                                   | 0-2            | 0       | -    | U16          | At stop                | Immedi-<br>ately  |
| 05h   | F31.04         | Fault record initialization    | 0: Inactive<br>1: Fault record clearing                                                                                                                                                                       | 0-1            | 0       | -    | U16          | At stop                | Immedi-<br>ately  |
| 11h   | F31.10         | Encoder data reset             | <ul> <li>0: Inactive</li> <li>1: Read encoder</li> <li>2: Write encoder</li> <li>3: Reset encoder fault</li> <li>4: Reset encoder fault</li> <li>and multi-turn data</li> <li>16: Operation failed</li> </ul> | 0-31           | 0       | _    | U16          | At stop                | Immedi-<br>ately  |

• For details about parameters above, refer to section 11.3.10 "Group F31".

## Running Monitoring Parameters (2040h/U40)

| Index | Param-<br>eter | Name            | Options | Value<br>Range | Default | Unit | Data<br>Type | Modifica-<br>tion Mode | Effective<br>Time |
|-------|----------------|-----------------|---------|----------------|---------|------|--------------|------------------------|-------------------|
| 01h   | U40.00         | Speed reference | -       | -9000-<br>9000 | 0       | rpm  | I16          | Read only              | Immedi-<br>ately  |
| 02h   | U40.01         | Speed feedback  | -       | -9000-<br>9000 | 0       | rpm  | I16          | Read only              | Immedi-<br>ately  |

| Index | Param-<br>eter | Name                                           | Options | Value<br>Range                | Default | Unit                | Data<br>Type | Modifica-<br>tion Mode | Effective<br>Time |
|-------|----------------|------------------------------------------------|---------|-------------------------------|---------|---------------------|--------------|------------------------|-------------------|
| 03h   | U40.02         | Torque reference                               | -       | -4000-<br>4000                | 0       | 0.1%                | I16          | Read only              | Immedi-<br>ately  |
| 04h   | U40.03         | Torque feedback                                | -       | -4000-<br>4000                | 0       | 0.1%                | I16          | Read only              | Immedi-<br>ately  |
| 05h   | U40.04         | DI status                                      | -       | 0-65535                       | 0       | -                   | U16          | Read only              | Immedi-<br>ately  |
| 06h   | U40.05         | DO status                                      | -       | 0-65535                       | 0       | -                   | U16          | Read only              | Immedi-<br>ately  |
| 07h   | U40.06         | Bus voltage                                    | -       | 0-9000                        | 0       | 0.1V                | U16          | Read only              | Immedi-<br>ately  |
| 08h   | U40.07         | Average load ratio                             | -       | 0-4000                        | 0       | 0.1%                | U16          | Read only              | Immedi-<br>ately  |
| 09h   | U40.08         | Electrical angle                               | -       | 0-36000                       | 0       | 0.01°               | U16          | Read only              | Immedi-<br>ately  |
| 0Ah   | U40.09         | Mechanical angle                               | -       | 0-36000                       | 0       | 0.01°               | U16          | Read only              | Immedi-<br>ately  |
| 0Dh   | U40.0C         | RMS value of phase current                     | -       | -9000-<br>9000                | 0       | 0.1A                | I16          | Read only              | Immedi-<br>ately  |
| 11h   | U40.10         | Position deviation counter                     | -       | $-2^{31}$ -<br>( $2^{31}$ -1) | 0       | Р                   | I32          | Read only              | Immedi-<br>ately  |
| 15h   | U40.14         | Absolute position reference                    | -       | $-2^{31}$ -<br>( $2^{31}$ -1) | 0       | Unit in application | I32          | Read only              | Immedi-<br>ately  |
| 17h   | U40.16         | Absolute position<br>feedback (reference unit) | -       | $-2^{31}$ -<br>( $2^{31}$ -1) | 0       | Unit in application | I32          | Read only              | Immedi-<br>ately  |
| 19h   | U40.18         | Absolute position<br>feedback (encoder unit)   | -       | $-2^{31}$ -<br>( $2^{31}$ -1) | 0       | Р                   | I32          | Read only              | Immedi-<br>ately  |
| 1Bh   | U40.1A         | Absolute position<br>feedback (encoder unit)   | -       | $-2^{31}$ -<br>( $2^{31}$ -1) | 0       | Р                   | I32          | Read only              | Immedi-<br>ately  |
| 1Dh   | U40.1C         | Encoder single-turn<br>data                    | -       | $-2^{31}$ -<br>( $2^{31}$ -1) | 0       | Р                   | I32          | Read only              | Immedi-<br>ately  |
| 1Fh   | U40.1E         | Encoder multi-turn position data               | -       | 0-65535                       | 0       | Rev                 | U16          | Read only              | Immedi-<br>ately  |
| 20h   | U40.1F         | Encoder initial angle                          | -       | 0-36000                       | 0       | 0.01°               | U16          | Read only              | Immedi-<br>ately  |
| 21h   | U40.20         | Encoder multi-turn<br>data (low 32 bits)       | -       | $-2^{31}$ -<br>( $2^{31}$ -1) | 0       | Р                   | I32          | Read only              | Immedi-<br>ately  |
| 23h   | U40.22         | Encoder multi-turn<br>data (high 32 bits)      | -       | $-2^{31}$ -<br>( $2^{31}$ -1) | 0       | Р                   | I32          | Read only              | Immedi-<br>ately  |

| Index | Param-<br>eter | Name                                                                       | Options | Value<br>Range                  | Default | Unit                | Data<br>Type | Modifica-<br>tion Mode | Effective<br>Time |
|-------|----------------|----------------------------------------------------------------------------|---------|---------------------------------|---------|---------------------|--------------|------------------------|-------------------|
| 25h   | U40.24         | Absolute position<br>feedback (encoder<br>unit) (low 32 bits)              | -       | $-2^{31}$ -(2 <sup>31</sup> -1) | 0       | Р                   | 132          | Read only              | Immedi-<br>ately  |
| 27h   | U40.26         | Absolute position<br>feedback (encoder<br>unit) (high 32 bits)             | -       | $-2^{31}$ -( $2^{31}$ -1)       | 0       | Р                   | 132          | Read only              | Immedi-<br>ately  |
| 29h   | U40.28         | Position feedback<br>in rotation mode<br>(reference unit) (low<br>32 bits) | -       | $-2^{31}$ -(2 <sup>31</sup> -1) | 0       | Unit in application | 132          | Read only              | Immedi-<br>ately  |
| 2Bh   | U40.2A         | Position feedback<br>in rotation mode<br>(encoder unit) (low 32<br>bits)   | -       | $-2^{31}$ -(2 <sup>31</sup> -1) | 0       | Р                   | I32          | Read only              | Immedi-<br>ately  |
| 2Dh   | U40.2C         | Position feedback<br>in rotation mode<br>(encoder unit) (high<br>32 bits)  | -       | $-2^{31}$ -(2 <sup>31</sup> -1) | 0       | Р                   | 132          | Read only              | Immedi-<br>ately  |
| 31h   | U40.30         | Heatsink temperature                                                       | -       | -9000-<br>9000                  | 0       | 0.1°C               | I16          | Read only              | Immedi-<br>ately  |
| 35h   | U40.34         | Offline inertia auto-<br>tuning value                                      | -       | 0-12000                         | 0       | %                   | U16          | Read only              | Immedi-<br>ately  |
| 37h   | U40.36         | Instantaneous value in phase U current                                     | -       | $-2^{31}$ -<br>( $2^{31}$ -1)   | 0       | 0.001A              | I32          | Read only              | Immedi-<br>ately  |
| 39h   | U40.38         | Instantaneous value in phase V current                                     | -       | $-2^{31}$ -<br>( $2^{31}$ -1)   | 0       | 0.001A              | I32          | Read only              | Immedi-<br>ately  |
| 3Bh   | U40.3A         | Synchronization cycle measured value                                       | -       | 0-(2 <sup>31</sup> -1)          | 0       | 10ns                | U32          | Read only              | Immedi-<br>ately  |
| 3Dh   | U40.3C         | SYNC and IRQ phase value                                                   | -       | $-2^{31}$ -<br>( $2^{31}$ -1)   | 0       | 10ns                | I32          | Read only              | Immedi-<br>ately  |
| 3Fh   | U40.3E         | Drive accumulated heat                                                     | -       | 0-2000                          | 0       | 0.1%                | U16          | Read only              | Immedi-<br>ately  |
| 40h   | U40.3F         | Motor accumulated heat                                                     | -       | 0-2000                          | 0       | 0.1%                | U16          | Read only              | Immedi-<br>ately  |

• For details about parameters above, refer to section 11.3.11 "Group U40".

# Status Monitoring Parameters (2041h/U41)

| Index | Param-<br>eter | Name                                                        | Options | Value<br>Range         | Default | Unit | Data<br>Type | Modifica-<br>tion Mode | Effective<br>Time |
|-------|----------------|-------------------------------------------------------------|---------|------------------------|---------|------|--------------|------------------------|-------------------|
| 01h   | U41.00         | MCU system status                                           | -       | 0-65535                | 0       | -    | U16          | Read only              | Immedi-<br>ately  |
| 02h   | U41.01         | MCU fault state                                             | -       | 0-65535                | 0       | -    | U16          | Read only              | Immedi-<br>ately  |
| 05h   | U41.04         | Encoder system status                                       | -       | 0-65535                | 0       | -    | U16          | Read only              | Immedi-<br>ately  |
| 06h   | U41.05         | Encoder fault state                                         | -       | 0-65535                | 0       | -    | U16          | Read only              | Immedi-<br>ately  |
| 07h   | U41.06         | Group number of<br>abnormal parameter                       | -       | 0-255                  | 0       | -    | U16          | Read only              | Immedi-<br>ately  |
| 08h   | U41.07         | Offset of the abnormal parameter within the parameter group | -       | 0-255                  | 0       | -    | U16          | Read only              | Immedi-<br>ately  |
| 0Bh   | U41.0A         | Servo Status                                                | -       | 0-3                    | 0       | -    | U16          | Read only              | Immedi-<br>ately  |
| 0Ch   | U41.0B         | Servo running mode                                          | -       | 0-9                    | 0       | -    | U16          | Read only              | Immedi-<br>ately  |
| 0Dh   | U41.0C         | Servo running time                                          | -       | 0-(2 <sup>32</sup> -1) | 0       | 0.1s | U32          | Read only              | Immedi-<br>ately  |

## Version Parameters (2042h/U42)

| Index | Param-<br>eter | Name                                      | Options | Value<br>Range | Default | Unit | Data<br>Type | Modifica-<br>tion Mode | Effective<br>Time |
|-------|----------------|-------------------------------------------|---------|----------------|---------|------|--------------|------------------------|-------------------|
| 01h   | U42.00         | ARM version                               | -       | 0-65535        | 0       | 0.01 | U16          | Read only              | Immediately       |
| 03h   | U42.02         | Encoder version                           | -       | 0-65535        | 0       | 0.01 | U16          | Read only              | Immediately       |
| 04h   | U42.03         | ARM-based machine                         | -       | 0-65535        | 0       | 0.01 | U16          | Read only              | Immediately       |
| 06h   | U42.05         | Internal software version                 | -       | 0-65535        | 0       | 0.01 | U16          | Read only              | Immediately       |
| 0Bh   | U42.0A         | EtherCAT CoE version                      | -       | 0-65535        | 0       | 0.01 | U16          | Read only              | Immediately       |
| 0Ch   | U42.0B         | EtherCAT XML version                      | -       | 0-65535        | 0       | 0.01 | U16          | Read only              | Immediately       |
| 11h   | U42.10         | Drive model                               | -       | 0-65535        | 0       | -    | U16          | Read only              | Immediately       |
| 12h   | U42.11         | Motor model                               | -       | 0-65535        | 0       | -    | U16          | Read only              | Immediately       |
| 13h   | U42.12         | Encoder model                             | -       | 0-65535        | 0       | -    | U16          | Read only              | Immediately       |
| 14h   | U42.13         | Power supply unit model<br>identification | -       | 0-65535        | 0       | -    | U16          | Read only              | Immediately       |

| Index | Param-<br>eter | Name                            | Options | Value<br>Range | Default | Unit | Data<br>Type | Modifica-<br>tion Mode | Effective<br>Time |
|-------|----------------|---------------------------------|---------|----------------|---------|------|--------------|------------------------|-------------------|
| 15h   | U42.14         | Inverter model identification 1 | -       | 0-65535        | 0       | -    | U16          | Read only              | Immediately       |
| 16h   | U42.15         | Inverter model identification 2 | -       | 0-65535        | 0       | -    | U16          | Read only              | Immediately       |
| 17h   | U42.16         | Servo version                   | -       | 0-65535        | 0       | -    | U16          | Read only              | Immediately       |

## 11.2.2 Common Parameters in Group 6000h

Parameter group 6000h contains supported sub-protocol DSP 402 related objects.

| Index | Sub-<br>index | Name                          | Access the<br>Platform | PDO<br>Mapping | Data<br>Type | Unit              | Value<br>Range         | Default | Modifica-<br>tion Mode | Effective<br>Time    |
|-------|---------------|-------------------------------|------------------------|----------------|--------------|-------------------|------------------------|---------|------------------------|----------------------|
| 603Fh | 0             | Error code                    | RO                     | TPDO           | U16          | -                 | -                      | -       | -                      | -                    |
| 6040h | 0             | Control word                  | RW                     | RPDO           | U16          | -                 | 0-65535                | 0       | During operation       | Immedi-<br>ately     |
| 6041h | 0             | Status word                   | RO                     | TPDO           | U16          | -                 | -                      | -       | -                      | -                    |
| 605Ah | 0             | Quick stop option code        | RW                     | NO             | I16          | -                 | 0-7                    | 2       | During operation       | Upon re-<br>power-on |
| 605Ch | 0             | Stop mode upon<br>servo-off   | RW                     | NO             | I16          | -                 | -4-1                   | 0       | During operation       | Upon re-<br>power-on |
| 605Dh | 0             | Halt option code              | RW                     | NO             | I16          | -                 | 1-3                    | 1       | During operation       | Upon re-<br>power-on |
| 605Eh | 0             | Stop mode at No. 2<br>fault   | RW                     | NO             | I16          | -                 | 5-3                    | 2       | During operation       | Upon re-<br>power-on |
| 6060h | 0             | Servo mode                    | RW                     | RPDO           | 18           | -                 | 0-10                   | 0       | During operation       | Immedi-<br>ately     |
| 6061h | 0             | Modes of operation<br>display | RO                     | TPDO           | 18           | -                 | -                      | -       | -                      | -                    |
| 6062h | 0             | Position reference            | RO                     | TPDO           | 132          | Reference<br>unit | -                      | -       | -                      | -                    |
| 6063h | 0             | Position feedback             | RO                     | TPDO           | 132          | Encoder<br>unit   | -                      | -       | -                      | -                    |
| 6064h | 0             | Position feedback             | RO                     | TPDO           | I32          | Reference<br>unit | -                      | -       | -                      | -                    |
| 6065h | 0             | Following error window        | RW                     | RPDO           | U32          | Reference<br>unit | 0-(2 <sup>32</sup> -1) | 0       | During operation       | Immedi-<br>ately     |
| 6066h | 0             | Following error time out      | RW                     | RPDO           | U16          | ms                | 0-65535                | 0       | During operation       | Immedi-<br>ately     |
| 6067h | 0             | Position reach threshold      | RW                     | RPDO           | U32          | Reference<br>unit | 0-(2 <sup>32</sup> -1) | 734     | During operation       | Immedi-<br>ately     |

| Index | Sub-<br>index | Name                            | Access the<br>Platform |          | Data<br>Type | Unit                             | Value<br>Range                | Default            | Modifica-<br>tion Mode | Effective<br>Time |
|-------|---------------|---------------------------------|------------------------|----------|--------------|----------------------------------|-------------------------------|--------------------|------------------------|-------------------|
| 6068h | 0             | Position window time            | RW                     | RPDO     | U16          | ms                               | 0-65535                       | 0                  | During operation       | Immedi-<br>ately  |
| 606Ch | 0             | Actual speed                    | RO                     | TPDO     | I32          | Reference<br>unit/s              | -                             | -                  | -                      | -                 |
| 606Dh | 0             | Speed reach threshold           | RW                     | RPDO     | U16          | rpm                              | 0-65535                       | 10                 | During operation       | Immedi-<br>ately  |
| 606Eh | 0             | Velocity window time            | RW                     | RPDO     | U16          | ms                               | 0-65535                       | 0                  | During operation       | Immedi-<br>ately  |
| 606Fh | 0             | Velocity threshold              | RW                     | RPDO     | U16          | rpm                              | 0-65535                       | 10                 | During operation       | Immedi-<br>ately  |
| 6070h | 0             | Velocity threshold time         | RW                     | RPDO     | U16          | ms                               | 0-65535                       | 0                  | During operation       | Immedi-<br>ately  |
| 6071h | 0             | Target torque                   | RW                     | RPDO     | I16          | 0.1%                             | 4000-<br>4000                 | 0                  | During operation       | Immedi-<br>ately  |
| 6072h | 0             | Max. torque                     | RW                     | RPDO     | U16          | 0.1%                             | 0-4000                        | 3500               | During operation       | Immedi-<br>ately  |
| 6074h | 0             | Torque reference                | RO                     | TPDO     | I16          | 0.1%                             | -                             | 0                  | -                      | -                 |
| 6077h | 0             | Actual torque                   | RO                     | TPDO     | I16          | 0.1%                             | -                             | 0                  | -                      | -                 |
| 607Ah | 0             | Target position                 | RW                     | RPDO     | I32          | Reference<br>unit                | $-2^{31}$ -<br>( $2^{31}$ -1) | 0                  | During operation       | Immedi-<br>ately  |
| 607Ch | 0             | Home offset                     | RW                     | RPDO     | I32          | Reference<br>unit                | $-2^{31}$ -<br>( $2^{31}$ -1) | 0                  | During operation       | Immedi-<br>ately  |
|       |               | l                               |                        | Software | absolu       | te position l                    | imit                          |                    | 1                      |                   |
|       | 0             | Highest sub-index supported     | RO                     | NO       | U8           | -                                | -                             | 0x02               | -                      | -                 |
| 607D  | 1             | Minimum software position limit | RW                     | RPDO     | I32          | Reference<br>unit                | $-2^{31}$ -<br>( $2^{31}$ -1) | -2 <sup>31</sup>   | During operation       | Immedi-<br>ately  |
|       | 2             | Maximum software position limit | RW                     | RPDO     | I32          | Reference<br>unit                | $-2^{31}$ -<br>( $2^{31}$ -1) | 2 <sup>31</sup> -1 | During operation       | Immedi-<br>ately  |
| 607Eh | 0             | Reference polarity              | RW                     | RPDO     | U8           | -                                | 0-255                         | 0                  | During operation       | Immedi-<br>ately  |
| 607Fh | 0             | Maximum speed                   | RW                     | RPDO     | U32          | Reference<br>unit/s              | 0-(2 <sup>32</sup> -1)        | 104857600          | During operation       | Immedi-<br>ately  |
| 6081h | 0             | Profile operating speed         | RW                     | RPDO     | U32          | User<br>velocity                 | 0-(2 <sup>32</sup> -1)        | 1747627            | During operation       | Immedi-<br>ately  |
| 6083h | 0             | Profile acceleration rate       | RW                     | RPDO     | U32          | Reference<br>unit/s <sup>2</sup> | 0-(2 <sup>32</sup> -1)        | 174762666          | During operation       | Immedi-<br>ately  |

| Index | Sub-<br>index | Name                              | Access the<br>Platform | PDO<br>Mapping | Data<br>Type | Unit                             | Value<br>Range                  | Default            | Modifica-<br>tion Mode | Effective<br>Time |
|-------|---------------|-----------------------------------|------------------------|----------------|--------------|----------------------------------|---------------------------------|--------------------|------------------------|-------------------|
| 6084h | 0             | Profile deceleration rate         | RW                     | RPDO           | U32          | Reference<br>unit/s <sup>2</sup> | 0-(2 <sup>32</sup> -1)          | 174762666          | During operation       | Immedi-<br>ately  |
| 6085h | 0             | Quick stop deceleration           | RW                     | RPDO           | U32          | Reference<br>unit/s <sup>2</sup> | 0-(2 <sup>32</sup> -1)          | 2 <sup>31</sup> -1 | During operation       | Immedi-<br>ately  |
| 6086h | 0             | Motion profile type               | RW                     | RPDO           | I16          | -                                | 32767-<br>32767                 | 0                  | During operation       | Immedi-<br>ately  |
| 6087h | 0             | Torque slope                      | RW                     | RPDO           | U32          | 0.1%/s                           | 0-(2 <sup>32</sup> -1)          | 2 <sup>32</sup> -1 | During operation       | Immedi-<br>ately  |
|       |               |                                   |                        |                | Gear         | ratio                            |                                 |                    |                        |                   |
|       | 0             | Highest sub-index<br>supported    | RO                     | NO             | U8           | U8                               | -                               | 0x02               | -                      | -                 |
| 6091h | 1             | Motor revolutions                 | RW                     | RPDO           | U32          | -                                | 0-(2 <sup>32</sup> -1)          | 1                  | During operation       | Immedi-<br>ately  |
|       | 2             | Shaft revolutions                 | RW                     | RPDO           | U32          | -                                | 1-(2 <sup>32</sup> -1)          | 1                  | During operation       | Immedi-<br>ately  |
| 6098h | 0             | Homing method                     | RW                     | RPDO           | 18           | -                                | 2-35                            | 1                  | During operation       | Immedi-<br>ately  |
|       |               |                                   |                        | ]              | Homin        | g speed                          |                                 |                    |                        |                   |
|       | 0             | Highest sub-index<br>supported    | RO                     | NO             | U8           | -                                | -                               | 2                  | -                      | -                 |
| 6099h | 1             | Speed during search<br>for switch | RW                     | RPDO           | U32          | Reference<br>unit/s              | 0-(2 <sup>32</sup> -1)          | 1747627            | During operation       | Immedi-<br>ately  |
|       | 2             | Speed during search<br>for zero   | RW                     | RPDO           | U32          | Reference<br>unit/s              | 10-(2 <sup>32</sup> -1)         | 174763             | During operation       | Immedi-<br>ately  |
| 609Ah | 0             | Homing acceleration               | RW                     | RPDO           | U32          | Reference<br>unit/s <sup>2</sup> | 0-(2 <sup>32</sup> -1)          | 1747626667         | During operation       | Immedi-<br>ately  |
| 60B0h | 0             | Position offset                   | RW                     | RPDO           | I32          | Reference<br>unit                | $-2^{31}$ -<br>( $2^{31}$ -1)   | 0                  | During operation       | Immedi-<br>ately  |
| 60B1h | 0             | Speed deviation                   | RW                     | RPDO           | 132          | Reference<br>unit/s              | $-2^{31}$ -(2 <sup>31</sup> -1) | 0                  | During operation       | Immedi-<br>ately  |
| 60B2h | 0             | Torque offset                     | RW                     | RPDO           | I16          | 0.10%                            | 4000-<br>4000                   | 0                  | During operation       | Immedi-<br>ately  |
| 60B8h | 0             | Touch probe function              | RW                     | RPDO           | U16          | -                                | 0-65535                         | 0                  | During operation       | Immedi-<br>ately  |
| 60B9h | 0             | Touch probe status                | RW                     | TPDO           | U16          | -                                | -                               | 0                  | -                      | -                 |
| 60BAh | 0             | Touch probe 1 positive<br>edge    | RW                     | TPDO           | I32          | Reference<br>unit                | -                               | 0                  | -                      | -                 |

| Index | Sub-<br>index | Name                                   | Access the<br>Platform |       | Data<br>Type | Unit                         | Value<br>Range       | Default            | Modifica-<br>tion Mode | Effective<br>Time |
|-------|---------------|----------------------------------------|------------------------|-------|--------------|------------------------------|----------------------|--------------------|------------------------|-------------------|
| 60BBh | 0             | Touch probe 1 negative edge            | RW                     | TPDO  | I32          | Reference<br>unit            | -                    | 0                  | -                      | -                 |
| 60BCh | 0             | Touch probe 2 positive<br>edge         | RW                     | TPDO  | I32          | Reference<br>unit            | -                    | 0                  | -                      | -                 |
| 60BDh | 0             | Touch probe 2 negative edge            | RW                     | TPDO  | I32          | Reference<br>unit            | -                    | 0                  | -                      | -                 |
| 60C5h | 0             | Max. acceleration                      | RW                     | RPDO  | U32          | User<br>acceleration<br>unit | 0-2 <sup>32</sup> -1 | 2 <sup>31</sup> -1 | During operation       | Immedi-<br>ately  |
| 60C6h | 0             | Max. deceleration                      | RW                     | RPDO  | U32          | User<br>acceleration<br>unit | 0-2 <sup>32</sup> -1 | 2 <sup>31</sup> -1 | During operation       | Immedi-<br>ately  |
| 60D5h | 0             | Touch probe 1 positive<br>edge counter | RO                     | TPDO  | U16          | -                            | -                    | 0                  | -                      | -                 |
| 60D6h | 0             | Touch probe 1<br>negative edge counter | RO                     | TPDO  | U16          | -                            | -                    | 0                  | -                      | -                 |
| 60D7h | 0             | Touch probe 2 positive edge counter    | RO                     | TPDO  | U16          | -                            | -                    | 0                  | -                      | -                 |
| 60D8h | 0             | Touch probe 2<br>negative edge counter | RO                     | TPDO  | U16          | -                            | -                    | 0                  | -                      | -                 |
| 60E0h | 0             | Positive torque limit                  | RW                     | RPDO  | U16          | 0.1%                         | 0-4000               | 3500               | During operation       | Immedi-<br>ately  |
| 60E1h | 0             | Negative torque limit                  | RW                     | RPDO  | U16          | 0.1%                         | 0-4000               | 3500               | During operation       | Immedi-<br>ately  |
|       |               |                                        |                        | Suppo | rted ho      | ming method                  | d                    |                    |                        |                   |
|       | 0             | Highest sub-index<br>supported         | RO                     | NO    | U8           | -                            | -                    | 22                 | -                      | -                 |
|       | 1             | 1st supported homing method            | RO                     | NO    | I16          | -                            | -                    | 1                  | -                      | -                 |
|       | 2             | 2nd supported homing method            | RO                     | NO    | I16          | -                            | -                    | 2                  | -                      | -                 |
| 60E3h | 3             | 3rd supported homing method            | RO                     | NO    | I16          | -                            | -                    | 3                  | -                      | -                 |
|       | 4             | 4th supported homing method            | RO                     | NO    | I16          | -                            | -                    | 4                  | -                      | -                 |
|       | 5             | 5th supported homing method            | RO                     | NO    | I16          | -                            | -                    | 5                  | -                      | -                 |
|       | 6             | 6th supported homing method            | RO                     | NO    | I16          | -                            | -                    | 6                  | -                      | -                 |

| Index | Sub-<br>index | Name                            | Access the<br>Platform | PDO<br>Mapping | Data<br>Type | Unit | Value<br>Range | Default | Modifica-<br>tion Mode | Effective<br>Time |
|-------|---------------|---------------------------------|------------------------|----------------|--------------|------|----------------|---------|------------------------|-------------------|
|       | 7             | 7th supported homing method     | RO                     | NO             | I16          | -    | -              | 7       | -                      | -                 |
|       | 8             | 8th supported homing method     | RO                     | NO             | I16          | -    | -              | 8       | -                      | -                 |
|       | 9             | 9th supported homing method     | RO                     | NO             | I16          | -    | -              | 9       | -                      | -                 |
|       | A             | 10th supported homing method    | RO                     | NO             | I16          | -    | -              | 10      | -                      | -                 |
|       | в             | 11th supported homing method    | RO                     | NO             | I16          | -    | -              | 11      | -                      | -                 |
|       | С             | 12th supported homing method    | RO                     | NO             | I16          | -    | -              | 12      | -                      | -                 |
|       | D             | 13th supported homing method    | RO                     | NO             | I16          | -    | -              | 13      | -                      | -                 |
|       | Е             | 14th supported homing method    | RO                     | NO             | I16          | -    | -              | 14      | -                      | -                 |
|       | F             | 15th supported homing method    | RO                     | NO             | I16          | -    | -              | 17      | -                      | -                 |
|       | 10            | 16th supported homing method    | RO                     | NO             | I16          | -    | -              | 18      | -                      | -                 |
|       | 11            | 17th supported homing method    | RO                     | NO             | I16          | -    | -              | 19      | -                      | -                 |
|       | 12            | 18th supported homing method    | RO                     | NO             | I16          | -    | -              | 20      | -                      | -                 |
|       | 13            | 19th supported homing<br>method | RO                     | NO             | I16          | -    | -              | 21      | -                      | -                 |
|       | 14            | 20th supported homing method    | RO                     | NO             | I16          | -    | -              | 22      | -                      | -                 |
|       | 15            | 21th supported homing method    | RO                     | NO             | I16          | -    | -              | 23      | -                      | -                 |
|       | 16            | 22th supported homing method    | RO                     | NO             | I16          | -    | -              | 24      | -                      | -                 |
|       | 17            | 23th supported homing method    | RO                     | NO             | I16          | -    | -              | 25      | -                      | -                 |
|       | 18            | 24th supported homing method    | RO                     | NO             | I16          | -    | -              | 26      | -                      | -                 |
|       | 19            | 25th supported homing method    | RO                     | NO             | I16          | -    | -              | 27      | -                      | -                 |

| Index | Sub-<br>index | Name                                           | Access the<br>Platform | PDO<br>Mapping | Data<br>Type | Unit                | Value<br>Range                 | Default | Modifica-<br>tion Mode | Effective<br>Time |
|-------|---------------|------------------------------------------------|------------------------|----------------|--------------|---------------------|--------------------------------|---------|------------------------|-------------------|
|       | 1A            | 26th supported homing method                   | RO                     | NO             | I16          | -                   | -                              | 28      | -                      | -                 |
|       | 1B            | 27th supported homing method                   | RO                     | NO             | I16          | -                   | -                              | 29      | -                      | -                 |
|       | 1 1 C         | 28th supported homing method                   | RO                     | NO             | I16          | -                   | -                              | 30      | -                      | -                 |
|       | 1 D           | 29th supported homing method                   | RO                     | NO             | I16          | -                   | -                              | 33      | -                      | -                 |
|       | 1E            | 30th supported homing method                   | RO                     | NO             | I16          | -                   | -                              | 34      | -                      | -                 |
|       | 1 I F         | 31th supported homing method                   | RO                     | NO             | I16          | -                   | -                              | 35      | -                      | -                 |
| 60E6h | 0             | Encoder increments for the additional position | RW                     | NO             | U16          | -                   | 0-1                            | 0       | During operation       | Immedi-<br>ately  |
| 60F4h | 0             | Position deviation                             | RO                     | TPDO           | 132          | Reference<br>unit   | -                              | -       | -                      | -                 |
| 60FCh | 0             | Position reference                             | RO                     | TPDO           | 132          | Encoder<br>unit     | -                              | -       | -                      | -                 |
| 60FDh | 0             | DI status                                      | RO                     | TPDO           | U32          | -                   | -                              | -       | -                      | -                 |
| 60FFh | 0             | Target velocity                                | RW                     | RPDO           | 132          | Reference<br>unit/s | $(-2^{31}-1)-$<br>$(2^{31}-1)$ | 0       | During operation       | Immedi-<br>ately  |
| 6502h | 0             | Supported drive<br>modes                       | RO                     | NO             | U32          | -                   | -                              | 941     | -                      | -                 |

• For details about parameters above, refer to section 11.3.12 "Group 6000".

# **11.3 Description of Parameters**

# 11.3.1 Group C00

C00.05: Stiffness level

Defines the stiffness level of the servo system. The higher the stiffness level, the stronger the gains and the quicker the response will be. But an excessively high stiffness level will cause vibration. The setpoint 0 indicates the lowest stiffness and 41 indicates the highest stiffness.

#### C00.06: Load inertia ratio

- Defines the mechanical load inertia ratio relative to the motor moment of inertia.
- When C00.06 is set to 0, it indicates the motor carries no load; if it is set to 1.00, it indicates the mechanical load inertia is the same as the motor moment of inertia.
- When the value of C00.06 is equal to the actual inertia ratio, the value of speed loop gain can represent the
  maximum follow-up frequency of actual speed loop.

### 11.3.2 Group C01

#### C01.00: 1st position loop gain

- Defines the proportional gain of the position loop.
- This parameter determines the responsiveness of the position loop. A high setpoint shortens the positioning time. Note that an excessively high setpoint may cause vibration.
- The 1st gain set includes C01.00, C01.01, C01.02, and C01.03.

#### C01.01: 1st speed loop gain

- Defines the speed loop proportional gain.
- This parameter determines the responsiveness of the speed loop. The higher the setpoint, the faster the speed loop response is. Note that an excessively high setpoint may cause vibration.
- In the position control mode, the position loop gain must be increased together with the speed loop gain.

#### C01.02: 1st speed loop integral time

- Defines the speed loop integral time constant.
- The lower the setpoint, the better the integral action, and the quicker will the deviation value be close to 0.
- There is no integral action when C01.02 is set to 512.00 ms

#### C01.08: 2nd position loop gain

- Defines the 2nd gain of the position loop.
- The 2nd gain set includes C01.08, C01.09, C01.0A, and C01.0B.
- For details about gain switchover, see section 7.5 "Gain Switchover".

#### C01.0B: 2nd torque reference filter cutoff frequency

- Defines the torque reference filter time constant.
- Low-pass filtering of torque references helps to smoothen torque references and reduce vibration.
- Pay attention to the responsiveness during setting as an excessively high setpoint lowers down the responsiveness.

- The servo drive offers two low-pass filters for torque references. By default, the 1st filter is used.
- Gain switchover can be used in the position or speed control mode. Once certain conditions are satisfied, the servo drive can switch to filter 2.

### C01.11: Cutoff frequency of speed feedback low-pass filter

- Defines the cutoff frequency for first-order low-pass filtering on the speed feedback.
- The lower the setpoint, the weaker the speed feedback fluctuation, and the longer the feedback delay will be.
- Setting this parameter to 8000 Hz negates the filtering effect.

### C01.12: Speed feedback overlapping average filter time constant

- Defines the moving average filtering times for speed feedback.
- The higher the setpoint, the weaker the speed feedback fluctuation, but the longer the feedback delay will be.
- When C01.12 is set to a value higher than 0, C01.11 (Cutoff frequency of speed feedback low-pass filter) is invalid.

#### C01.13: Speed feedforward source

- Defines the source of the speed loop feedforward signal.
- In the position control mode, the speed feedforward control can improve the position reference responsiveness.

| Setpoint | Speed Feedforward<br>Source | Remarks                                                                                                                                                                                                                                                                                               |
|----------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0        | No feedforward              | -                                                                                                                                                                                                                                                                                                     |
| 1        | Internal reference          | The speed corresponding to the position reference (encoder unit) is defined as the speed feedforward source.                                                                                                                                                                                          |
| 2        | Model tracking              | Model tracking control can improve the responsiveness and shorten<br>the positioning time.<br>It is only available in the position control mode.<br>It must be used with C02.00. When C02.00 is set to 1, the speed<br>feedforward is sourced from the speed feedforward output of model<br>tracking. |
| 5        | Communication               | In CSP, 60B1h is used as the source of the external speed<br>feedforward signal.<br>Bit 6 of 607Eh can specify the polarity of the speed feedforward<br>signal (60B1h).                                                                                                                               |

#### C01.14: Speed feedforward percentage

• In the position control mode, speed feedforward is the value of C01.14 multiplied by the speed feedforward

signal, which is part of the speed reference. Increasing the setpoint improves the responsiveness to position references and reduces the position deviation during operation at a constant speed.

- Set C01.15 to a fixed value first, and then gradually increase the value of C01.14 from 0 to a certain setpoint at which speed feedforward achieves the desired effect.
- Adjust C01.15 and C01.14 repeatedly until a balanced setting is achieved.
- For the speed feedforward function and speed feedforward signal selection, see C01.13 (Speed feedforward source selection).

C01.15: Speed feedforward filter cutoff frequency

Defines the speed feedforward smoothing filter time.

#### C01.16: Torque feedforward source

- Defines whether to enable the internal torque feedforward function in a non-torque control mode.
- The torque feedforward function can improve the torque reference responsiveness and reduce the position deviation during operation at constant acceleration/deceleration rate.

| Setpoint | Torque Feedforward<br>Source | Remarks                                                                                                                                                                                                                                                 |
|----------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0        | No feedforward               | -                                                                                                                                                                                                                                                       |
| 1        | Internal reference           | The torque feedforward signal source is the speed reference.<br>In the position control mode, the speed reference is output from the<br>position controller. In the speed control mode, the speed reference is<br>output from the user speed reference. |
| 2        | Model tracking               | It must be used with C02.00. When C02.00 is set to 1, the torque feedforward is sourced from the torque feedforward output of model tracking.                                                                                                           |
| 5        | Communication                | In CSP, 60B1h is used as the source of the external torque feedforward signal.<br>Bit 6 of 607Eh can specify the polarity of the torque feedforward signal (60B1h).                                                                                     |

- Torque feedforward parameters include C01.17 (Torque feedforward percentage) and C01.18 (Torque feedforward cutoff frequency).
- In a non-torque control mode, the control block diagram of torque feedforward is as follows:

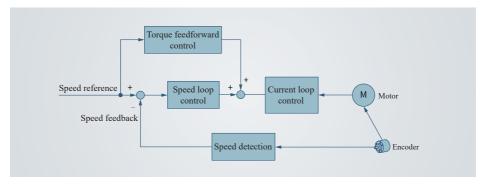



Figure 11-1 Torque feedforward control

### C01.17: Torque feedforward percentage

In control modes other than torque control, torque feedforward is the product of torque feedforward signal
multiplied by C01.17 and is part of the torque reference. Increasing the setpoint improves the responsiveness
to variable speed references and position references and reduces the position deviation during operation at
a constant speed.

#### C01.18: Torque feedforward filter cutoff frequency

• Defines the filter time constant of torque feedforward.

#### C01.1B: PDFF control coefficient

- Defines the control method of the speed loop.
- When the setpoint is 100.0, PI control (default control mode of the speed loop) is applied to the speed loop, which features fast dynamic response.
- When the setpoint is 0.0, speed loop integral action is enhanced, which filters out low-frequency interference but also slows down the dynamic response.
- C01.1B can be used to keep a good responsiveness of the speed loop, with the anti-interference capacity in low-frequency bands improved and the speed feedback overshoot not increased.

#### C01.30: Adaptive notch mode

Setpoint:

- 0: Adaptive notch not updated
- 1: One adaptive notch activated (3rd notch)
- 2: Two adaptive notches activated (3rd and 4th notches)
- 3: Adaptive notch cleared, values of the 3rd and 4th notches restored to default settings
- 4: Resonance point tested only, displayed in C01.31, C01.32, and C01.33

#### Description:

• Defines the operation mode of the adaptive notch.

## C01.38: Gain switchover mode

| Setpoint | Gain Switchover<br>Condition   | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0        | Fixed to the 1st gain set      | The 1st gain set applies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1        | DI switchover                  | Gains are switched through bit 26 of 60FE.<br>Bit 26 signal inactive: 1st gain set<br>Bit 26 signal active: 2nd gain set<br>If the bit 26 signal cannot be allocated to a DI terminal, the 1st gain set<br>applies.                                                                                                                                                                                                                                                                                                                     |
| 2        | DI P-PI switchover             | Gains are switched through bit 26 of 60FE.<br>Bit 26 signal inactive: 1st gain set<br>Bit 26 signal active: 2nd gain set (The 2nd speed loop integral (C01.0A) is<br>forced to be 512 ms.)<br>If the bit 26 signal cannot be allocated to a DI terminal, the 1st gain set<br>applies.                                                                                                                                                                                                                                                   |
| 3        | Torque reference               | When the absolute value of the torque reference exceeds (threshold + loop width, %) in the last 1st gain set, the drive switches to the 2nd gain set.<br>When the absolute value of the torque reference is less than (threshold – loop width, %) and this status lasts within the delay (C01.39) in the last 2nd gain set, the drive returns to the 1st gain set.                                                                                                                                                                      |
| 4        | Speed reference                | When the absolute value of the speed reference exceeds (threshold + loop width, rpm) in the last 1st gain set, the drive switches to the 2nd gain set. When the absolute value of the speed reference is less than (threshold – loop width, rpm) and this status lasts within the delay (C01.39) in the last 2nd gain set, the drive returns to the 1st gain set.                                                                                                                                                                       |
| 5        | Speed feedback                 | It is valid only in the position control mode.<br>When the absolute value of the actual speed exceeds (threshold + loop<br>width, rpm) in the last 1st gain set, the drive switches to the 2nd gain set.<br>When the absolute value of the actual speed is less than (threshold – loop<br>width, rpm) and this status lasts within the delay (C01.39) in the last 2nd<br>gain set, the drive returns to the 1st gain set.<br>The 1st gain set applies when the drive is not in the position control mode.                               |
| 6        | Speed reference change<br>rate | It is valid only in non-speed control modes.<br>When the absolute value of the change rate in the speed reference exceeds<br>(threshold + loop width, 10 rpm/s) in the last 1st gain set, the drive switches<br>to the 2nd gain set.<br>When the absolute value of the change rate in the speed reference is less<br>than (threshold – loop width, 10 rpm/s) and this status lasts within the delay<br>(C01.39) in the last 2nd gain set, the drive returns to the 1st gain set.<br>The 1st gain set applies in the speed control mode. |

| Setpoint | Gain Switchover<br>Condition | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7        | Position deviation           | When the absolute value of the position deviation exceeds (threshold + loop width, encoder unit) in the last 1st gain set, the drive switches to the 2nd gain set.<br>When the absolute value of the position deviation is less than (threshold + loop width, encoder unit) and this status lasts within the delay (C01.39) in the last 2nd gain set, the drive returns to the 1st gain set.<br>The 1st gain set applies when the drive is not in the position control mode. |
| 8        | Position reference           | It is valid only in the position control mode.<br>When the position reference is not 0 in the last 1st gain set, the drive<br>switches to the 2nd gain set.<br>When the position reference is 0 and this status lasts within the delay<br>(C01.39) in the last 2nd gain set, the drive returns to the 1st gain set.<br>The 1st gain set applies when the drive is not in the position control mode.                                                                          |

## C01.39: Gain switchover time

Defines the duration when the drive switches from the 2nd gain set to the 1st gain set.

#### C01.3A: Gain switchover threshold

- Defines the gain switchover threshold.
- Gain switchover is affected by both the threshold and the loop width, as defined by C01.38. The unit of gain switchover threshold varies with the switchover condition.
- Set C01.3A to a value greater than or equal to C01.3B. If C01.3A is set to a value less than C01.3B, the servo drive sets C01.3A to the same value as C01.3B.

#### C01.3B: Gain switchover loop width

- Defines the gain switchover loop width.
- Gain switchover is affected by both the threshold and the loop width. The unit of gain switchover threshold varies with the switchover condition.
- Set C01.3A to a value greater than or equal to C01.3B. If C01.3A is set to a value less than C01.3B, the servo drive sets C01.3A to the same value as C01.3B.

#### C01.40: Frequency of the 1st notch

- Defines the center frequency of the notch, which is the mechanical resonance frequency.
- In the torque control mode, setting the notch frequency to 8000 Hz deactivates the notch function.

#### C01.41: Width level of the 1st notch

- Defines the width level of the notch. Use the default value in general cases.
- Width level is the ratio of the notch width to the notch center frequency.

#### C01.42: Depth level of the 1st notch

- Defines the depth level of the notch.
- The depth level of the notch is the ratio between the input to the output at the notch center frequency.
- The higher the setpoint, the lower the notch depth and the weaker the mechanical resonance suppression will be. Note that an excessively high setpoint may cause system instability.
- For the use of notch, see 7.14 "Vibration Suppression".

#### C01.45: Depth level of the 2nd notch

• Description of the 2nd notch parameters is the same as that of the 1st notch parameters.

## NOTICE

• The 1st and 2nd notches can be set manually or configured as adaptive notches (C01.30 = 1 or 2). In this case, the parameters are automatically set by the drive, while the other three notches can be set manually.

## 11.3.3 Group C03

#### C03.21: Speed reference

• It is the speed reference in the local speed mode, which is invalid in EtherCAT mode.

#### C03.22: Acceleration rate

• It is the acceleration ramp time of the speed reference in the local speed mode, which is invalid in EtherCAT mode.

#### C03.24: Deceleration rate

• It is the deceleration ramp time of the speed reference in the local speed mode, which is invalid in EtherCAT mode.

#### C03.27: Internal positive speed limit

• It is the PL of the speed reference in the local speed mode, which is invalid in EtherCAT mode.

#### C03.28: Internal negative speed limit

• It is the NL of the speed reference in the local speed mode, which is invalid in EtherCAT mode.

#### C03.43: Internal positive torque limit

- It is valid only in the local torque mode. For torque limit in EtherCAT mode, use 60E0h/60E1h/6072h. Use the torque limit with caution as an excessively low limit value may lead to insufficient motor torque output.
- If the setpoint exceeds the maximum torque of the servo motor and servo drive, the actual torque is limited to the maximum torque of the servo motor and servo drive.

#### C03.44: Internal negative torque limit

• It is valid only in the local torque mode. For torque limit in EtherCAT mode, use 60E0h/60E1h/6072h.

Use the torque limit with caution as an excessively low limit value may lead to insufficient motor torque output.

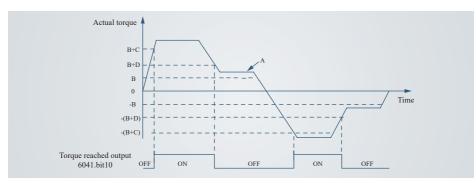
 If the setpoint exceeds the maximum torque of the servo motor and servo drive, the actual torque is limited to the maximum torque of the servo motor and servo drive.

C03.47: Positive speed limit in torque mode

It is valid only in the local torque mode. Use 607F for the speed limit in the EtherCAT, CST, and PT modes.

C03.48: Negative speed limit in torque mode

It is valid only in the local torque mode. Use 607F for the speed limit in the EtherCAT, CST, and PT modes.


C03.4B: Invalid value for torque reached

- The torque reached function is used to judge whether the actual torque reference reaches the range of the valid value for torque reached. If yes, the servo drive outputs the corresponding flag (bit 10 of the status word) to the host controller.
  - A: Actual torque reference (U40.02)
  - B: Base value for torque reach (C03.49)
  - C: Valid value for torque reach (C03.4A)
  - D: Invalid value for torque reach (C03.4B)

C and D are offsets on the basis of B.

The torque reach signal is activated only when the actual torque reference meets the condition:  $|A| \ge B + C$ . Otherwise, the torque reach signal remains inactive.

The torque reach signal is deactivated only when the actual torque reference meets the condition: |A| < B + D.



## 11.3.4 Group C05

C05.0D: Maximum downtime

 Defines the maximum time taken by the motor in decelerating from 6000 RPM to 0 RPM when the stop mode is set to "Ramp to stop as defined by 6084h/609Ah (HM)" or "Ramp to stop as defined by 6085h".

### 11.3.5 Group C06

#### C06.04: Input phase loss detection

Servo drives support three-phase 380 V power supplies. When voltage fluctuation or phase loss occurs on the power supply, power input phase loss protection will be triggered by the servo drive based on the setting of C06.04.

- C06.04 = 0: The servo drive reports Er81.0 (Phase loss fault) when the servo drive is set to 3 kW.
- C06.04 = 1: The servo drive does not report Er81.0 (Phase loss fault) when the servo drive is set to 3 kW, with deration of 80%.

#### C06.11: Motor overload protection threshold

- Determines the motor overload duration before Er41.0 (Motor overload) is reported.
- You can change the setpoint to advance or delay the time when overload protection is triggered based on the motor temperature. The setpoint 50% indicates the time is cut by half; 150% indicates the time is prolonged by 50%.
- Set this parameter based on the actual temperature of the motor.

C06.20: Protection from out of control

• Sets whether to enable the runaway protection function.

### 11.3.6 Group C0A

#### COA.09: Commissioning software communication baud rate

- Defines the communication rate between the servo drive and the host controller.
- The baud rate set in the servo drive must be the same as that in the host controller. Otherwise, communication will fail.

#### COA.0A: Commissioning software communication format

- Defines the data check mode between the servo drive and the host controller during communication.
- The data format of the servo drive and the host controller must be the same; otherwise, the communication fails.

### 11.3.7 Group C13

#### C13.00: EtherCAT slave name

• Indicates the station number assigned to the slave by the master during EtherCAT communication.

#### C13.01: EtherCAT slave alias

- Indicates the station number assigned to the slave EtherCAT communication since the master cannot automatically assign station numbers.
- C13.01 = 0: The master assigns the station numbers by default. C13.01 ≠ 0: The set station number applies by default, with the one assigned by master deactivated.

C13.05: EtherCAT synchronization mode setting

• Defines the synchronization work mode:

| Setpoint | Function                 | Remarks                                                                                                                        |
|----------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| 0        | Manufacturer<br>Function | Manufacturer Function                                                                                                          |
| 1        | Sync 1                   | Applies to the scenarios where the synchronization performance indicator<br>of the host controller jitters for 1 us.           |
| 2        | Sync 2                   | Applies to the scenarios where the synchronization performance indicator<br>of the host controller jitters for more than 1 us. |

• In the work mode, the synchronization cycle must be an integer multiple of 125 µs. Otherwise, the serve drive will report Er74.0 (EtherCAT synchronization cycle setting is incorrect.)

C13.06: EtherCAT synchronization error threshold

 Defines the permissible jitter range of synchronization signals when the servo drive works in synchronization mode 1 (C13.05 = 1).

C13.08: EtherCAT enhanced link selection

- When a redundant loop network is used, the EtherCAT Enhanced Link Check function must be enabled (C13.08 = 1), which will take effect upon next power-on of the servo drive.
- When a loop network is used, both C13.08 and C13.19 need to be set to 1.

## 11.3.8 Group R21

#### R21.00: Drive model

| Setpoint:    |              |
|--------------|--------------|
| 2: 2T1R6     | 10002: 4T5R4 |
| 3: 2T2R8     | 10003: 4T8R4 |
| 5: 2T5R5     | 10004: 4T012 |
| 6: 2T7R6     | 10005: 4T017 |
| 7: 2T012     | 10006: 4T021 |
| 10001: 4T3R5 | 10007: 4T026 |

Description:

• Sets the SN of the servo drive. The following table lists the servo drive SNs.

| Setpoint | Servo<br>Drive SN | Remarks                                                                       |
|----------|-------------------|-------------------------------------------------------------------------------|
| 2        | 2T1R6             | The rated drive power is 0.2 kW. The main circuit inputs single-phase 220 V.  |
| 3        | 2T2R8             | The rated drive power is 0.4 kW. The main circuit inputs single-phase 220 V.  |
| 5        | 2T5R5             | The rated drive power is 0.75 kW. The main circuit inputs single-phase 220 V. |

| Setpoint | Servo<br>Drive SN | Remarks                                                                                                                                                                                                  |
|----------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6        | 2T7R6             | The rated drive power is 1.0 kW. The main circuit inputs single-phase or three-<br>phase 220 V.<br>(The main circuit of the servo drive supports single-phase 220 V power supplies<br>without derating.) |
| 7        | 2T012             | The rated drive power is 1.5 kW. The main circuit inputs single-phase or three-<br>phase 220 V.<br>(The main circuit of the servo drive supports single-phase 220 V power supplies<br>without derating.) |
| 10001    | 4T3R5             | The rated drive power is 0.85 kW. The main circuit inputs three-phase 380 V.                                                                                                                             |
| 10002    | 4T5R4             | The rated drive power is 1.5 kW. The main circuit inputs three-phase 380 V.                                                                                                                              |
| 10003    | 4T8R4             | The rated drive power is 2.0 kW. The main circuit inputs three-phase 380 V.                                                                                                                              |
| 10004    | 4T012             | The rated drive power is 3.0 kW. The main circuit inputs three-phase 380 V.                                                                                                                              |
| 10005    | 4T017             | The rated drive power is 5.0 kW. The main circuit inputs three-phase 380 V.                                                                                                                              |
| 10006    | 4T021             | The rated drive power is 6.0 kW. The main circuit inputs three-phase 380 V.                                                                                                                              |
| 10007    | 4T026             | The rated drive power is 7.5 kW. The main circuit inputs three-phase 380 V.                                                                                                                              |

If the voltage input to the main circuit of the servo drive does not comply with the preceding specifications, a fault or damage occurs.

## 11.3.9 Group F30

F30.03 JOG acceleration/deceleration time

 Acceleration/Deceleration time setpoint for jog in velocity mode, which can be enabled through parameter F30.00 on the panel or through the software

F30.10: Inertia auto-tuning selection

- Used to enable offline inertia auto-tuning through the keypad.
- In the parameter display mode, switch to F30.10 and press the SET key to enable offline inertia autotuning. For details about offline inertia auto-tuning, see section 7.2 "Inertia Auto-tuning".

### 11.3.10 Group F31

### F31.00: Fault reset

• Defines whether to enable fault reset.

| Setpoint | Function     | Remarks |
|----------|--------------|---------|
| 0        | No operation | -       |

| Setpoint | Function | Remarks                                                                                                                                                                                                                                                                                      |
|----------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1        | Enable   | When a No.1 or No.2 resettable fault occurs, you can enable the fault reset<br>function in the non-operational state after rectifying the fault cause and<br>stopping the keypad from displaying the fault.<br>When a No.3 warning occurs, you can enable the fault reset function directly. |

- For fault classification, see section 10.1.3 "List of faults and alarms".
- The fault reset function, once enabled, stops the keypad from displaying the fault only. It does not activate
  modifications made on parameters.
- This function is not applicable to non-resettable faults. Use this function with caution in cases where the fault causes are not rectified.

#### F31.01 Software reset

• Defines whether to enable fault reset.

| Setpoint | Function     | Remarks                                                                                                                                                                            |
|----------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0        | No operation | -                                                                                                                                                                                  |
| 1        | Enable       | Programs in the drive are reset automatically (similar to the program reset<br>upon power-on) after the software reset function is enabled, without the need<br>for a power cycle. |

Software reset conditions: The servo drive is disabled, and there is no non-resettable fault such as No.1 fault.

#### F31.10: Encoder data reset

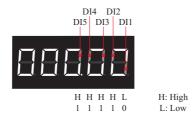
 The absolute position saved by the encoder changes abruptly after multi-turn data reset. In this case, perform mechanical homing.

### 11.3.11 Group U40

#### U40.00: Speed reference

 Indicates the present speed reference (accurate to 1 RPM) of the drive in the position and speed control modes.

#### U40.01: Speed feedback


- Indicates the actual motor speed after round-off, which is accurate to 1 rpm.
- This parameter is a 32-bit integer, which is displayed as a decimal on the keypad.

#### U40.02: Actual torque reference

Indicates the present torque reference (accurate to 0.1%). The value 100.0% corresponds to the rated torque of the motor.

#### U40.04: DI status

- Indicates the level status of five DIs without filtering.
- Upper LED segments ON: high level (indicated by "1")
   Lower LED segments ON: low level (indicated by "0") In cases where DI1 is low level and DI2 to DI5 are high level, the corresponding binary value is 11110, and the value of U40.04 read in the software tool is 30.
- The keypad displays as follows:



#### U40.05: DO state

- Indicates the level status of three DOs without filtering.
- Upper LED segments ON: high level (indicated by "1")
   Lower LED segments ON: low level (indicated by "0") In cases where DO1 is low level and DO2 to DO3 are high level, the corresponding binary value is 110, and the value of U40.05 read in the software tool is 6.
- The keypad displays as follows:



#### U40.06: Bus voltage

Indicates the DC bus voltage of the main circuit input voltage after rectification, which is accurate to 0.1 V.

#### U40.07: Average load ratio

Indicates the percentage of the average load torque to the rated torque of the motor, which is accurate to 0.1%. The value 100.0% corresponds to the rated torque of the motor.

#### U40.08: Electrical angle

- Indicates the present electrical angle of the motor, which is accurate to 0.1°.
- The electrical angle variation range is  $\pm 360.0^{\circ}$  when the motor rotates.
- If the motor has four pairs of poles, each revolution generates four rounds of angle changes from 0° to 359.9°.
- Similarly, if the motor has five pairs of poles, each revolution generates five rounds of angle changes from 0° to 359.9°.

#### U40.09: Mechanical angle

 Indicates present mechanical angle (encoder unit) of the motor. The value 0 indicates that the mechanical angle is 0°.

U40.0C: RMS value of phase current

• Indicates the RMS value of the phase current of the servo motor, which is accurate to 0.1 A.

U40.10: Position deviation counter

- Counts the position pulses fed back by the encoder in any control mode.
- This parameter is a 32-bit integer, which is displayed as a decimal on the keypad.

#### U40.30: Heatsink temperature

Indicates the temperature of the module inside the servo drive, which can be used as a reference for
estimating the actual temperature of the servo drive.

### 11.3.12 Group 6000

#### 603Fh: Fault code

- When a fault described in the DSP402 profile occurs on the drive, 603Fh is as described in DSP402.
- When a fault specified by the user occurs on the servo drive, 603Fh is 0xFF00. The value of 603Fh is in hexadecimal.
- In addition, the object dictionary 203Fh displays auxiliary bytes of fault code in hexadecimal.
- 203Fh is a UInt32 value, in which the high 16 bits indicate the internal fault code of the manufacturer, and the low 16 bits indicate the external fault code of the manufacturer.

#### 605Ah: Quick stop option code

- 0: Coast to stop, keeping de-energized status
- 1: Ramp to stop as defined by 6084h/609Ah (HM), keeping de-energized status
- 2: Ramp to stop as defined by 6085h, keeping de-energized status
- 3: Stop at emergency stop torque, keeping de-energized status
- 5: Ramp to stop as defined by 6084h/609Ah (HM), keeping position lock status
- 6: Ramp to stop as defined by 6085h, keeping position lock status
- 7: Stop at emergency stop torque, keeping position lock status

#### 605Ch: Stop mode at S-ON OFF

- -4: Ramp to stop as defined by 6085h, keeping dynamic braking status
- -3: Stop at zero speed, keeping dynamic braking status
- -2: Ramp to stop as defined by 6084h/609Ah (HM), keeping dynamic braking status
- -1: Dynamic braking stop, keeping dynamic braking status
- 0: Coast to stop, keeping de-energized status
- 1: Ramp to stop as defined by 6084h/609Ah (HM), keeping de-energized status

### 605Dh: Stop option code

- 1: Ramp to stop as defined by 6084h/609Ah (HM), keeping position lock status
- 2: Ramp to stop as defined by 6085h, keeping position lock status
- 3: Stop at emergency stop torque, keeping position lock status

#### 605Eh: Stop mode at No. 2 fault

- -5: Stop at zero speed, keeping dynamic braking status
- -4: Stop at emergency stop torque, keeping dynamic braking status
- -3: Ramp to stop as defined by 6085h, keeping dynamic braking status
- -2: Ramp to stop as defined by 6084h/609Ah (HM), keeping dynamic braking status
- -1: Dynamic braking stop, keeping dynamic braking status
- 0: Coast to stop, keeping de-energized status
- 1: Ramp to stop as defined by 6084h/609Ah (HM), keeping de-energized status
- 2: Ramp to stop as defined by 6085h, keeping de-energized status
- 3: Stop at emergency stop torque, keeping de-energized status
- 4: Dynamic braking stop, keeping de-energized status

#### 6060h: Modes of operation

#### Setpoint:

- 1: Profile position (PP) mode
- 3: Profile velocity (PV) mode
- 4: Profile torque (PT) mode
- 6: Homing mode (HM)
- 8: Cyclic synchronous position (CSP) mode
- 9: Cyclic synchronous velocity (CSV) mode
- 10: Cyclic synchronous torque (CST) mode

Others: N/A

#### Description:

- If an unsupported operation mode is selected through an SDO, an SDO error will be returned.
- If an unsupported operation mode is selected through a PDO, the change of the operation mode will be invalid.

## 6061h: Modes of operation display

- 1: PP mode
- 3: PV mode
- 4: PT mode
- 6: HM
- 8: CSP mode
- 9: CSV mode
- 10: CST mode

### 6064h: Position actual value

Position actual value in user-defined unit (6064h) x Gear ratio (6091h) = Position actual value in encoder

unit (6063h)

### 6065h: Following error window

 When the difference value between position reference (6062h) and position actual value (6064h) keeps exceeding ±6065h after the time defined by 6066h elapses, Er47.0 (Position deviation too large) occurs.

## 6066h: Following error time out

• Defines the time lapse to trigger excessive position deviation, used with 6065h.

## 6067h: Max. profile velocity

- Defines the threshold for position reach.
- If the difference between the position reference value (6062h) and the position actual value (6064h) is within ±6067h and the time reaches 6068h, the position is reached. In this case, bit 10 of 6041h is set to 1 in PP mode.
- This flag bit is meaningful only when the S-ON signal is active in PP mode.

## 6068h: Position window time

• Defines the window time for position reach, which must be used together with 6067h.

## 606Dh: Velocity window

- Defines the threshold for speed reach.
- If the difference value between the target speed (60FFh) and the actual speed (606Ch) is within ±606Dh and the time reaches 606Eh, the speed is reached and bit 10 of the status word 6041h is set to 1 in the PV mode.
- This flag bit is meaningful only when the S-ON signal is active in PV mode.

## 606Fh: Velocity threshold

- Defines the threshold for determining whether the user velocity is 0.
- When the velocity actual value (606Ch) is within ±606Fh and the time reaches the value set by 6070h, the user velocity is 0. When either condition is not met, the user velocity is not 0.
- This flag bit is valid only in PV mode.
- It is not related to the S-ON state.

## 6070h: Velocity threshold time

• Defines the time window for determining whether the user velocity is 0, which must be used together with 606Fh.

## 6071h: Target torque

- Defines the target torque of the servo drive in PT mode.
- The value 1000 corresponds to the rated torque of the motor.

### 6072h: Max. torque

• Defines the maximum torque reference limit.

• The value 1000 corresponds to the rated torque of the motor.

#### 6074h: Torque reference value

- Defines the target torque value.
- The value 1000 corresponds to the rated torque of the motor.

#### 6077h: Torque actual value

- Indicates the internal torque feedback of the servo drive.
- The value 1000 corresponds to the rated torque of the motor.

#### 607Ah: Target position

- Defines the target position of the servo drive in PP mode.
- When bit 6 of 6040h is set to 0, 607Ah indicates the absolute target position of current segment. After
  positioning of the current segment is done, the value of 6064h will be the same as the value of 607Ah.
- When bit 6 of 6040h is set to 1, 607Ah indicates the target incremental displacement of the current segment. After positioning of current segment is done, the incremental displacement will be the same as the value of 607Ah.

### 607Ch: Home offset

- Defines the physical location of mechanical zero that deviates from the home of the motor in position control modes (profile position mode, interpolation mode, and homing mode).
- The home offset in active under the following conditions: The device is powered on, the homing operation is complete, and bit 15 of 6041h is set to 1.
- After homing is done, the position actual value (6064h) will be the same as the value of 607Ch.
- If 607Ch is set to a value outside 607Dh (Software position limit), Er84.3 (Home setting error) will occur.

### 607D.01h: Minimum software position limit

- Defines the minimum software position limit relative to the mechanical zero.
- Minimum software position limit = (607D.01h)
- The software position limit is used to judge the absolute position. When homing is not performed, the
  internal software position limit is inactivated.

#### 607D.02h: Maximum software position limit

- Defines the maximum software position limit relative to the mechanical zero.
- Maximum software position limit = (607D.02h)

#### 607Eh: Polarity

- Defines the polarity of position or speed references.
- When bit 7 is 1, it indicates the position reference is multiplied by "-1" and the motor direction is reversed in the standard position mode or interpolation mode.
- When bit 6 is 1, it indicates the speed reference (60FFh) is multiplied by "-1" and the motor direction is reversed in the speed mode.

- When bit 5 is 1, it indicates the torque reference (6071h) is multiplied by "-1" and the motor direction is reversed in the torque mode.
- Other bits are meaningless.

#### 607Fh: Max. profile velocity

• Defines the maximum operating speed in user-defined unit.

#### 6081h: Profile velocity

- Defines the constant operating speed of the target position in PP mode
- The setpoint takes effect after the slave receives the displacement reference.

#### 6083h: Profile acceleration

- Defines the acceleration rate in the acceleration stage of the displacement reference in PP mode.
- The following formula applies if a motor equipped with 17-bit encoder needs to run at 400 RPM (6081h: 400 x 131072/60) with acceleration rate being 400 RPM/s (6083h: 400 x 131072/60) and deceleration rate being 200 RPM/s (6084h: 200 x 131072/60) under a gear ratio of 1:1:

Acceleration time tup =  $\Delta 6081h/\Delta 6083h = 1$  (s).

Deceleration time tdown =  $\Delta 6081h/\Delta 6084h=2$  (s).

• The setpoint 0 will be forcibly changed to 1.

### 6084h: Profile deceleration

- Defines the deceleration rate in the deceleration stage of the displacement reference in PP mode.
- The following formula applies if a motor equipped with 17-bit encoder needs to run at 400 RPM (6081h: 400 x 131072/60) with acceleration rate being 400 RPM/s (6083h: 400 x 131072/60) and deceleration rate being 200 RPM/s (6084h: 200 x 131072/60) under a gear ratio of 1:1:

Acceleration time tup =  $\Delta 6081h/\Delta 6083h = 1$  (s).

Deceleration time tdown =  $\Delta 6081h/\Delta 6084h=2$  (s).

The setpoint 0 will be forcibly changed to 1.

#### 6085h: Quick stop deceleration

- Defines the deceleration rate when the quick stop command (6040h set to 0x0002) is active and 605Ah (Quick stop option code) is set to 2 or 5.
- The setpoint 0 will be forcibly changed to 1.

#### 6087h: Torque slope

- Defines the acceleration rate (torque reference increment per second) of the torque reference in PT mode.
- In PT mode, if 605Ah is set to 1, 2, 5, or 6, or 605Dh is set to 1 or 2, the servo drive decelerates to stop as defined by 6087h.
- If the setpoint exceeds the torque reference limit, the limit value will be used.
- The setpoint 0 will be forcibly changed to 1.

#### 6091.01h: Torque slope

- Defines the numerator of the gear ratio.
- The gear ratio is used to establish the proportional relationship between the load shaft displacement designated by the user and the motor shaft displacement.
- The relationship between motor position feedback (encoder unit) and load shaft position feedback (reference unit) is as follows.

Motor position feedback = Load shaft position feedback x Gear ratio

The relationship between the motor speed (rpm) and the load shaft speed (reference unit/s) is as follows.

Motor speed (rpm) = Load shaft speed x 6091h x 60/Encoder resolutions

• The relationship between the motor acceleration (rpm/ms) and the load shaft acceleration (reference unit/s<sup>2</sup>) is as follows.

Motor acceleration (rpm/ms) = Load shaft acceleration x 6091h x 1000/Encoder resolutions/60

### 6091.02h: Shaft revolutions

• Defines the denominator of the gear ratio.

### 6098h: Homing method

• For details, see Table 4-1 "Mode lists".

#### 6099.01h: Speed during search for switch

Defines the speed during search for the deceleration point signal. A large setpoint helps prevent homing timeout.

#### 6099.02h: Speed during search for zero

 Defines the speed in searching for the home signal. Setting this speed to a low value prevents overshoot during stop at high speed, avoiding excessive deviation between the stop position and the set mechanical home.

#### 609Ah: Homing acceleration

• Defines the acceleration rate in homing mode.

## 60B8h: Touch Probe Function

| Bit      | Name                                                                                                                                | Description                                                                                                                                                                                       |  |  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 0        | Touch probe 1 function selection<br>0: Disabled<br>1: Enabled                                                                       |                                                                                                                                                                                                   |  |  |
| 1        | Touch probe 1 trigger mode<br>0: Single trigger mode (Latches the position at the first<br>trigger event.)<br>1: Continuous trigger | bit0 to bit5: Probe 1 related settings<br>When DI is used as the probe trigger<br>signal, the DI source cannot be changed<br>after the probe is enabled.<br>For an absolute encoder, the Z signal |  |  |
| 2        | Touch probe 1 trigger signal selection<br>0: DI signal<br>1: Z signal                                                               |                                                                                                                                                                                                   |  |  |
| 3        | Reserved                                                                                                                            | refers to the zero point of motor single-                                                                                                                                                         |  |  |
| 4        | Touch probe 1 positive edge<br>0: Switch off latching at positive edge<br>1: Enable latching at positive edge                       | turn position feedback.                                                                                                                                                                           |  |  |
| 5        | Touch probe 1 negative edge<br>0: Switch off latching at negative edge<br>1: Enable latching at negative edge                       |                                                                                                                                                                                                   |  |  |
| 6 to 7   | Reserved                                                                                                                            | '                                                                                                                                                                                                 |  |  |
| 8        | Touch probe 2 function selection<br>0: Disabled<br>1: Enabled                                                                       |                                                                                                                                                                                                   |  |  |
| 9        | Touch probe 2 trigger mode<br>0: Single trigger mode (Latches the position at the first<br>trigger event.)<br>1: Continuous trigger | bit8 to bit13: Probe 2 related settings                                                                                                                                                           |  |  |
| 10       | Touch probe 2 trigger signal selection<br>0: DI signal<br>1: Z signal                                                               |                                                                                                                                                                                                   |  |  |
| 11       | Reserved                                                                                                                            |                                                                                                                                                                                                   |  |  |
| 12       | Touch probe 2 positive edge<br>0: Switch off latching at positive edge<br>1: Enable latching at positive edge                       | bit8 to bit13: Probe 2 related settings                                                                                                                                                           |  |  |
| 13       | Touch probe 2 negative edge<br>0: Switch off latching at negative edge<br>1: Enable latching at negative edge                       | ono to on 15. 1 1000 2 fetated settings                                                                                                                                                           |  |  |
| 14 to 15 | Reserved                                                                                                                            |                                                                                                                                                                                                   |  |  |

60BAh: Touch probe 1 positive edge

• Indicates the position feedback value (reference unit) latched at positive edge of touch probe 1 signal.

### 60BBh: Touch probe 1 negative edge

• Indicates the position feedback value (reference unit) latched at negative edge of touch probe 1 signal.

#### 60BCh: Touch probe 2 positive edge

• Indicates the position feedback value (reference unit) latched at positive edge of touch probe 2 signal.

#### 60BDh: Touch probe 2 negative edge

• Indicates the position feedback value (reference unit) latched at negative edge of touch probe 2 signal.

### 60C5h: Max. acceleration

- Defines the maximum permissible deceleration in PP mode, PV mode, and homing mode.
- The setpoint 0 will be forcibly changed to 1.

### 60C6h: Max. deceleration

- Defines the maximum permissible deceleration in PP mode, PV mode, and homing mode.
- The setpoint 0 will be forcibly changed to 1.

#### 60D5h: Touch probe 1 positive edge counter

• The counting value is added by "1" each time this object is triggered.

#### 60D6h: Touch probe 1 negative edge counter

• The counting value is added by "1" each time this object is triggered.

#### 60D7h: Touch probe 2 positive edge counter

• The counting value is added by "2" each time this object is triggered.

### 60D8h: Touch probe 2 negative edge counter

• The counting value is added by "2" each time this object is triggered.

#### 60E0h: Positive torque limit

• Defines the maximum torque limit of the servo drive in the forward direction.

#### 60E1h: Negative torque limit

• Defines the maximum torque limit of the servo drive in the reverse direction.

#### 60E3.01h: 1st supported homing method

- Bit 0 to bit 7: The low 8 bits indicate the supported homing method. Set 6098h to the corresponding value.
- Bit 8: Relative position homing
   0: Not supported
   1: Supported
- Bit 9: Absolute position homing
  - 0: Not supported
  - 1: Supported
- Bit 10 to bit 15: N/A

### 60E6h: Actual position calculation method

• Defines the method for calculating the mechanical position after homing is completed. After homing is triggered, changes in 60E6h will be blocked.

## 60F4h: Position deviation

• This object indicates the position deviation (in reference unit).

## 60FCh: Position reference value

- Indicates the position reference (encoder unit).
- If no warning is detected when the S-ON signal is active, the relationship between the position reference in reference unit and that in encoder unit is as follows:

60FCh (in encoder unit) = 6062h (in reference unit) x 6091h

## 60FDh: DI status

• Indicates current DI logic of the drive. 0: Inactive; 1: Active

| Bit      | Description               |
|----------|---------------------------|
| 0        | Reverse overtravel active |
| 1        | Forward overtravel active |
| 2        | Home signal active        |
| 3 to 15  | N/A                       |
| 16       | DI1 input active          |
| 17       | DI2 input active          |
| 18       | DI3 input active          |
| 19       | DI4 input active          |
| 20       | DI5 input active          |
| 21 to 26 | NA                        |

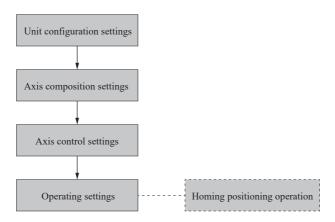
## 60FFh: Target velocity

• Defines the target velocity in CSV and PV mode.

## 6502h: Supported drive modes

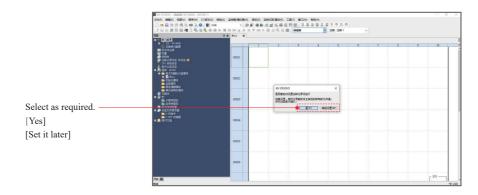
• Defines the target velocity in CSV and PV mode.

# 12.1 JSS715N and KEYENCE KV8000 Confguration

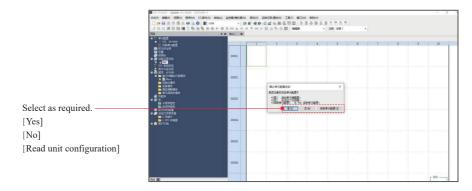

# 12.1.1 Servo Drive Configuration

Servo drive version:

It is recommended to use the device description file "JSS715N\_sAxis\_V0.10" and above to test the JSS715N series servo drive.


# 12.1.2 KEYENCE KV8000 Software Tool Configuration

The KEYENCE software tool is "KV STUDIO 11.63" and above. Lower versions may not support the extension of the KEYENCE EtherCAT module "KV XH16EC".

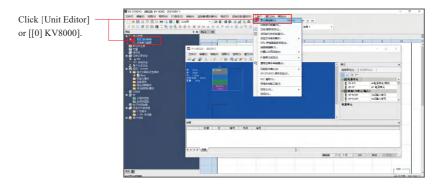



## Unit configuration settings

Create a project. After confirmation, the [Operation record settings] dialog box will automatically pop up.



Then the [Unit configuration settings] dialog box will automatically pop up.




If the PLC physical unit is correctly connected and has established a communication connection with the software tool, click [Read unit configuration]. The software tool will automatically obtain the unit configuration based on the physical connection.

If you click [Yes], the unit editor dialog box will automatically pop up, and you can drag or double-click the required units for configuration.

|                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BL DEF - DEF | 1997年 - 1997年 199 | •                    |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Select a unit for —<br>configuration. | Control of the c |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 48<br>88 0 86 96 98<br>*****\##/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ्र                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2<br>11.0,170 OK 224 |

If you click [No], you can choose [Tools] > [Unit Editor] or directly double-click [[0] KV8000] in the [Unit configuration] directory in the [Project] working space.



In the [Unit Editor] dialog box, click [Select Unit (1)] and select [KV-XH16EC] in [Position/Motion Unit] below.

| 30%(B)                   | 2007-1988年1743001-1990年17-1990年174300-1990年174301-1990年174300-1990年174301-1990年1740年174301-1990年1741-1990年1741-1<br>「日本学校会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会 | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Click [Select Unit (1)]. |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Select [KV-XH16EC].      |                                                                                                                                                               | Comparison of the second |
|                          | 50 50 0 60 60 40                                                                                                                                              | 9<br>968 116.28 CK EX 10<br>100 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

## Axis Composition Settings

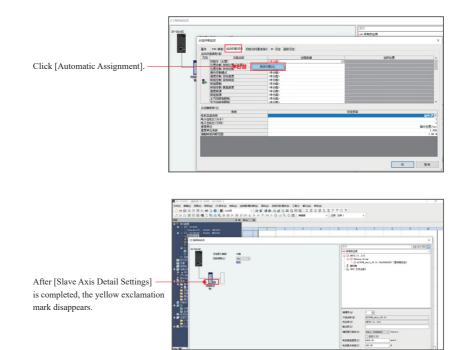
|                                               | COM BOOM BOOM COM COM COM CAN CAN CAN CAN CAN CAN CAN CAN |                 |                              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |              |  |  |
|-----------------------------------------------|-----------------------------------------------------------|-----------------|------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------|--|--|
|                                               | □●局目除清除局及●注載 cotal · 回顧 # ● 夜話 毛田信 / 早早 早 早 早 早 早 日       |                 |                              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |              |  |  |
|                                               | 2日日第日日間1506日、●●ト日日州ムドドアドンのふうの田 #488 ・386 3861 ・           |                 |                              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |              |  |  |
|                                               | FII FX Res X                                              |                 |                              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |              |  |  |
| ■ * # #A#<br>■ 1 Of 19 999                    |                                                           |                 |                              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |              |  |  |
|                                               | Tthe Fet/2 10000 200000                                   | 1 2             | 3 4                          | 8    | 6 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     | 9 20         |  |  |
| <ol> <li>Click [Axis Composition —</li> </ol> | <ul> <li>Difference</li> <li>Difference</li> </ul>        |                 |                              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | 1            |  |  |
| U Click [Axis Composition —                   | 0 Pridating 0000                                          |                 |                              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |              |  |  |
|                                               | 0 600 Note                                                |                 |                              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |              |  |  |
| Settings].                                    | N9126622                                                  |                 |                              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |              |  |  |
| bettings].                                    | OI (1) WASEE                                              |                 |                              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | ×            |  |  |
|                                               |                                                           |                 |                              | 35   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | (a to be [2] |  |  |
|                                               |                                                           |                 |                              | A8 9 | (有并应用                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     | ~            |  |  |
|                                               |                                                           |                 |                              |      | ARCTL Co., Lod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |              |  |  |
|                                               | OV M                                                      |                 |                              |      | at at the state of | (Account) (Baselier |              |  |  |
| O D III I'I FRANKEN                           | - 105 -                                                   |                 |                              |      | dation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |              |  |  |
| ② Double-click [ESI File ———                  |                                                           |                 |                              |      | . OET 元件法用3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |              |  |  |
| <u>с</u>                                      | - 10ar                                                    |                 |                              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |              |  |  |
| Registration].                                | Top                                                       | 编出师便注册的 ESI 文件。 |                              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                   |              |  |  |
| Registration].                                | 1 10 10 10 10 10 10 10 10 10 10 10 10 10                  | 6               | - RB < 389                   | ~    | 0 P 2 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.99                |              |  |  |
|                                               | - # 2                                                     |                 |                              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |              |  |  |
|                                               |                                                           | 组织 • 制建文件共      |                              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H • H •             |              |  |  |
|                                               |                                                           | - IIA           | 88                           |      | #2.5#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 92 ^                |              |  |  |
|                                               | 10                                                        | 1000ki (85.8)   | GR10-EC-35W_65W_1.           | 42.3 | 2023/7/28 9:14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3345.2255           |              |  |  |
| T and and improved the                        | = 🖴 R.F221                                                | 1200年展1029      | AS/BON_LAKE_VELTOT           |      | 2023/7/28 9:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | XML 文档              |              |  |  |
| ③ Locate and import the                       |                                                           | 10013018091     | AS730N sAkis V0.10(1         |      | 2023/6/14 20:01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2041, 2286          |              |  |  |
|                                               |                                                           | ANCTLServo5     | 最新市场和限量如4335<br>研究費用時間工業2023 |      | 2023/6/26 10:23 2023/6/20 9:57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 文件來<br>文件中          |              |  |  |
| device description file (.XML).               |                                                           | ASMC1081,30     | 研究通用統定工具20230<br>透影手册(形式所分)  | 517  | 2023/6/20 9:57 2023/7/6 10:52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 文件央<br>文件房          |              |  |  |
| actice accerption me ().                      | (fat )                                                    | Bypass          | 21229-01 (405-3407)          |      | 2023/7/6 1052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2049                |              |  |  |
|                                               | ica.                                                      |                 |                              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | 192.168.1.1  |  |  |

After the device description file is successfully imported, you can add axes. At the same time, in the axis composition settings, you can also set the control period. The minimum period is  $250 \ \mu$ s, and the default period is 1 ms.

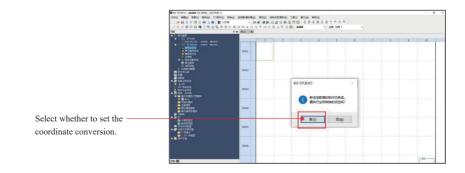

Double-click or drag the required axis to add it. Select the corresponding axis, and set key information of the axis, such as [Encoder Resolution], [Motor Max. Speed], and [Motor Max. Torque]. (The resolution is defaulted to 20 bits. Change it to the actual resolution of the motor.)

| Set [Encoder Resolution].                                                                              | <br>REN U STATUS |
|--------------------------------------------------------------------------------------------------------|------------------|
| You can add information such —<br>as the PDO and motion function<br>settings in slave detail settings. |                  |
|                                                                                                        |                  |




To make extended settings, set [Extended Settings] in the Others column to [Use].

For motion function settings, double-click or select the required PDO configuration from the drop-down box.




During manual matching, ensure that no content in the PDO mapping is missing. Otherwise, a popup window will prompt for missing content when you click [OK]. In general, [Initial communication command], [DC setting], [Advanced setting] maintain their default values. After setting, click [OK].

You can also [Right click] the function, choose [Automatic Assignment], and click [Yes] for automatic assignment. The matched content automatically matches the above PDO content one by one.



After adding the axis as needed, confirm it. The following dialog box will pop up, asking whether to set the coordinate conversion (that is, the electronic gear ratio).



 If you click [Yes], the coordinate conversion dialog box pops up. Set the mechanical parameters and coordinate units based on the actual situation, and then click [Execute Calculation]. The software automatically calculates the denominator and numerator values for the coordinate conversion, and automatically writes the parameters into [Axis Control Settings].



 If you click [No], choose [Tools] > [Extension Unit Settings] > [KV-XH Settings] > [Coordinate Conversion Calculation].

| <ol> <li>Click [Tools].</li> </ol>  | KV STUCIO - HANNER KV-8000] - (ASTVON *)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | Tar Bow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RING.                  |                                                                            | × σ ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| () click [100l3].                   | ■ 10 P+A/2<br>■ 10 P-4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | 9 (2 1)<br>289 (                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2 Choose [Extension Unit Settings]  | Disk-K-V22 EXCEND BRXXXX     Disk-K-V22 EXCEND BRXXXX     Disk-Exception BRXXXX     Disk-Exception BRXXXX     Disk-Exception BRXXXX     Disk-Exception BRXXXX     Disk-Exception BRXXXX     Disk-Exception BRXXXXX     Disk-Exception BRXXXX     Disk-Exception BRXXXX     Disk-Exception BRXXXX     Disk-Exception BRXXXX     Disk-Exception BRXXXXX     Disk-Exception BRXXXX     Disk-Exception BXXXXX     Disk-Exception BXXXXX     Disk-Exception BXXXXXX     Disk-Exception BXXXXXX     Disk-Exception BXXXXXX                                                                                                                                                                                                                                                                                                                                                                                        | PORTMA      | K10年2     CPU P938年     CPU P938年     SPAR4087                                                            |                        | NJ                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ③ Choose [KV-XH Settings].          | ▲ #2-12年<br>□ Athole<br>○ Com+Call<br>■ R(-1+1)<br>■ R(-1+1) | 018040      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00 ·<br>\$\$\$\$22(2)- | KV-UHRDIQ)<br>KV-MU/VCRBIT)<br>KV-H205.405/200/RB/MJ<br>MILL402/RM         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (4) Choose [Coordinate Conversion — |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WORKS       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Enswert<br>Witz        | KV-3D0282800<br>KV-3D288800<br>KV-3D288800<br>KV-3D2982800<br>KV-3D2982800 | Collegario     Sv2 (2000)     Sv2 (2000)     Sv2 (2000)     Sv2 (2000)     Sv2 (200)     Sv2 (2 |
| Calculation].                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _           | 但後期期中以量的1月<br>何後8月中で28<br>第2月1日(1月1日)開<br>(1月1日)開日(1月1日)開)日、日本<br>(1月1日)開)日、日本<br>(1月1日)開)日、日本<br>(1月1日)日、日本<br>(1月1日)日、日本<br>(1月1日)日、日本<br>(1月1日)日、日本<br>(1月1日)日、日本<br>(1月1日)日、日本<br>(1月1日)日、日本<br>(1月1日)日、日本<br>(1月1日)日、日本<br>(1月1日)日、日本<br>(1月1日)日、日本<br>(1月1日)日、日本<br>(1月1日)日、日本<br>(1月1日)日、日本<br>(1月1日)日、日本<br>(1月1日)日、日本<br>(1月1日)日、日本<br>(1月1日)日、日本<br>(1月1日)日、日本<br>(1月1日)日、日本<br>(1月1日)日、日本<br>(1月1日)日、日本<br>(1月1日)日<br>(1月1日)日、日本<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月1日)日<br>(1月11日)日<br>(1月11日)日<br>(1月11日)日<br>(1月11日)日<br>(1月11日)日<br>(1月11日)日<br>(1月11日)日<br>(1月11日)日<br>(1月11日)日<br>(1月11日)日<br>(1月11日)日<br>(1月11日)日<br>(1月11日)日<br>(1月11日)日<br>(1月11日)日<br>(1月11日)日<br>(1月11日)日<br>(1月11日)日<br>(1月11日)日<br>(1月11日)日<br>(1月11日)日<br>(1月11日)日<br>(1月11日)日<br>(1月11日)日<br>(1月11日)日<br>(1月11日)日)(11)(11)(11)(11)(11)(11)(11)(11)(1 | 20(18)                 | KV-682-VIR1000<br>KV-682-VIR1000                                           | 28N-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0201968.0   | 也是是"就是你<br>此時間的這些情報<br>你是他们認識人」」」「「」」」<br>例如此的情報<br>例如你的情報                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SHER        | 治時加速度小村间<br>治時加速度加速<br>治時加速度(2000年年<br>治時加速度(2000年<br>治時加速度(2000年)<br>治時加速度(2000年)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        | 00 PLS/solves<br>528<br>500 %<br>500 %<br>500 PLS/solves<br>528            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                     | 100 <b>(8</b> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>7</b> 14 | 10月前後 110月年<br>200 おい後期<br>200 高変単数<br>200 高変単数<br>200 高変単数<br>200 高変単数                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        | 000 8<br>508 FLJ/+<br>5008 FLJ/+<br>50 FLJ/+J++<br>509                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

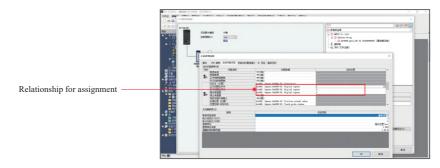
### Axis Control Settings

You can access axis control settings from the unit configuration project tree on the left, choose [Tools] > [Extension Unit Settings] > [KV XH Settings] > [Axis Control Settings], or choose [Project] > [Axis Control Settings].



Axis control settings include [Unit Coordinate Conversion], [Software Limit Coordinate], [Axis Error], [Axis

Control Function], [General Position Control], [Operating Speed], [JOG], [Homing], [Absolute Position Tracking Control], and [Synchronous Tracking Control].


## **Operating Settings**

## Homing

Before homing, it is necessary to associate the corresponding relationships of various bit positions of 60FD, such as [Positive Direction Limit Switch], [Negative Direction Limit Switch], and [Origin Sensor], in [Motion Function Settings] in [Axis Composition Settings]. Our company specifies the information for each bit of 60FD as follows:

Bit 0, bit 1, and bit 2 respectively indicate the NL, PL, HSW, and bit 16 to bit 20 correspond to DI1 to DI5 respectively.

After automatic assignment is selected in motion function settings, the PL and NL switches and origin sensor still need to be manually matched with the corresponding bit positions of 60FD. The corresponding relationship shown in the figure below can be used for assignment. Bit 16 to bit 20 can also be assigned to the PL and NL switches and origin sensor. However, in this case, the corresponding DI function needs to be configured to the corresponding PL and NL switches and origin sensor on the servo drive side (with the drive side configured by default).



The constraint parameters for homing are set in [Axis Control Settings] - [Homing]. The parameters include [Homing Method], [Homing Startup Speed], [Homing Creep Speed], and [Homing Direction]. The major homing methods are as follows. For specific trajectories, refer to the KEYENCE user manual named *Position/Motion Control Unit KV XH16EC User Manual*.

|                                | KV STUDIO - [MIRM: KV-6000] - [ASTNON *] |                       |                                             |              | - 0 |  |  |
|--------------------------------|------------------------------------------|-----------------------|---------------------------------------------|--------------|-----|--|--|
|                                | 2010 9800 9800 9950 10820 0              | NAU DRAWING R         | MO SHORADS IAD BOW                          | MID(S)       |     |  |  |
|                                | 1 C 📫 🖬 🗟 19 💐 10 🖨 (à 🚱 ) 👥 000         |                       |                                             |              |     |  |  |
|                                | XHHMRHR19AAG ##                          | NOT THE A N R T       | H > 0 J S O E ess                           | - 200 200 1  |     |  |  |
|                                |                                          | * × ()) wronter       | X Role H                                    | - 1 ma mai   |     |  |  |
|                                |                                          |                       |                                             | 11.000       |     |  |  |
|                                | [1] 27-000                               | 田市総合(2) (田)           | 14(A) 20 🗸 🗸 🔣 👘                            | 00           |     |  |  |
|                                | Education/27 820000 1823000              |                       | WEDER                                       | 81           |     |  |  |
|                                | E11 29-20102 E34000 202000               |                       | 法計劃の通常<br>単型には必要常                           | 0 752/5      |     |  |  |
|                                | 1. MRE22                                 |                       | 第二型 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) | 10 112/1/1/1 |     |  |  |
| Click [Axis Control Settings]. | • CURUSE                                 | 10487                 | 10961004001                                 | 22           |     |  |  |
| cher [/ kis control bettings]. | <ul> <li>% RFENGE</li> </ul>             | 104.8.8               | WHAT STATE                                  | 100 \$       |     |  |  |
|                                | • • • • • • • • • • • • • • • • • • •    |                       | 当时成变变,专门问<br>这时成变变问题                        | 10 PLL/s/ss  |     |  |  |
|                                |                                          |                       | WHEE INTER                                  | 222.8        |     |  |  |
|                                | C047557                                  |                       | 200 \$2358.87                               | 922 712/1    |     |  |  |
|                                | <b>20</b> 82/2/F3/2                      |                       | 300 高速兼理                                    | 5000 F15/v   |     |  |  |
|                                | 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1  |                       | No MERONA<br>No MERONA                      | 10 PLS/u/w   |     |  |  |
|                                | <ul> <li>d UMPEder</li> </ul>            | 10                    | 3× MR DARK                                  | 10.5         |     |  |  |
|                                | B 1 10                                   | 200                   |                                             | 10 PLE/s/w   |     |  |  |
|                                | CTV BARRE                                |                       |                                             |              |     |  |  |
|                                | - A ROULDE                               |                       | 300 Mill IIRFER                             | 200 %        |     |  |  |
|                                | <ul> <li>BXC08A/108A</li> </ul>          |                       | NO TUNELO                                   | 1 83         |     |  |  |
|                                |                                          |                       |                                             | 9.85/1       |     |  |  |
|                                |                                          |                       |                                             | 500 215/1    |     |  |  |
|                                | 后备情况                                     |                       | 原心型(2014)建築                                 | 5000 FLL/*   |     |  |  |
|                                | 第三人口を (1)を                               |                       | 原点第四加速度の(何<br>原点第四加速度の)(何                   | 10 RL/s/ws   |     |  |  |
|                                | PICR .                                   |                       | BORFESS LINKS                               | 220.8        |     |  |  |
|                                |                                          |                       | 原言語信用の作用                                    | 10 FL2/s/ss  |     |  |  |
| Set parameters in [Homing].    | 1 0902C                                  | 2020                  | WG BOD BALL BALL                            | 128          |     |  |  |
| F                              |                                          |                       | 用の間(1業県 518共革<br>用の間(2内内                    | 100 5        |     |  |  |
|                                | · · · · · · · · · · · · · · · · · · ·    |                       | #0.#12/34<br>#0.24                          | 0.756        |     |  |  |
|                                | 0.7484                                   |                       |                                             | 110          |     |  |  |
|                                | 1.CH 7/82                                |                       | 原点果(非)管理)月                                  | 0.84         |     |  |  |
|                                | B 🚔 R/25                                 |                       | 9457/67/2<br>9457/67/2                      |              |     |  |  |
|                                |                                          |                       | 1045710403<br>X0412824                      | 0.01         |     |  |  |
|                                |                                          |                       |                                             |              |     |  |  |
|                                |                                          |                       | 话转读度                                        | 6000 FL5/s   |     |  |  |
|                                |                                          | (6222世界)(221)         | 10速度-41间<br>10速度-41间                        | 10 RJ/s/ss   |     |  |  |
|                                | 100 100                                  | THE REAL PROPERTY AND | 現金意力で利用                                     | 10 FL2/s/ws  |     |  |  |

| Default                 | Value Range                          | Description                                                                                                                                                                                                                                                                                                    |  |  |  |
|-------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                         | DOG type (with phase Z)              | After the DOG signal is input, the servo drive starts to decelerate and performs homing with the phase Z signal.                                                                                                                                                                                               |  |  |  |
|                         | DOG type (without phase Z)           | After the DOG signal is input, the servo drive<br>starts to decelerate and performs homing at the<br>falling edge of the DOG signal.                                                                                                                                                                           |  |  |  |
|                         | DOG type inching (with phase Z)      | After the DOG signal is input, the servo drive<br>moves according to the movement distance after<br>DOG is turned on, and then pauses.<br>Then, the servo drive moves to the homing<br>direction by position-based speed control, and<br>performs homing with the phase Z signal.                              |  |  |  |
| DOG type (with phase Z) | DOG type inching (without phase Z)   | After the DOG signal is input, the servo drive<br>moves according to the movement distance after<br>DOG is turned on, and then performs homing.                                                                                                                                                                |  |  |  |
|                         | DOG type (contact)                   | After the DOG signal is input, the servo drive<br>performs homing when the ON time of the torque<br>limit signal is longer than the pressing torque<br>time.                                                                                                                                                   |  |  |  |
|                         | Origin sensor and phase Z            | After the origin sensor is ON, the servo drive performs homing at the initial position of phase Z.                                                                                                                                                                                                             |  |  |  |
|                         | Origin sensor rising edge            | The servo drive performs homing at the rising edge of the origin sensor.                                                                                                                                                                                                                                       |  |  |  |
|                         | Homing in progress (without phase Z) | The servo drive uses the intermediate point of the<br>range where the origin sensor is ON as the home.<br>Different from setting of the origin sensor rising<br>edge, even if the light receiving performance of<br>the origin sensor ages, the homing completion<br>position is unlikely to change over time. |  |  |  |

| Default | Value Range                   | Description                                                                                                                                               |
|---------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Limit switch rising edge      | The servo drive uses the negative limit switch<br>(in the direction where the current coordinate<br>decreases) as the origin sensor to perform<br>homing. |
|         | Immediate homing with phase Z | The servo drive performs homing by using the phase Z signal.                                                                                              |
|         | Data setting type             | The servo drive sets the current coordinate as the home coordinate.                                                                                       |

The JSS715N series servo drive supports the following homing methods.

| No. | Homing Mode                        | JSS715N                                                                 |
|-----|------------------------------------|-------------------------------------------------------------------------|
| 1   | DOG type (with phase Z)            | OK                                                                      |
| 2   | DOG type (without phase Z)         | ОК                                                                      |
| 3   | DOG type inching (with phase Z)    | NO                                                                      |
| 4   | DOG type inching (without phase Z) | NO                                                                      |
| 5   | DOG type (contact)                 | ОК                                                                      |
| 6   | Origin sensor and phase Z          | ОК                                                                      |
| 7   | Origin sensor rising edge          | ОК                                                                      |
| 8   | Origin sensor intermediate point   | NO                                                                      |
| 9   | Limit switch rising edge           | Homing is supported but the reference coordinate after homing is not 0. |
| 10  | Immediate homing with phase Z      | ОК                                                                      |

## Positioning Operation

Before the positioning operation, the correct unit coordinate conversion needs to be set. The default unit coordinate conversion is "PLS". In this unit, the coordinate conversion numerator and denominator cannot be changed. If the servo drive needs to select N revolutions, the number of commands that the host controller needs to send is "N x encoder feedback pulses per revolution". After coordinate conversion calculation, the unit coordinate conversion parameter automatically matches the coordinate conversion result.

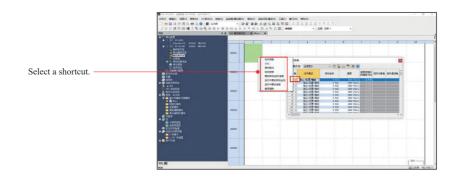
Choose [Tools] > [Extension Unit Settings] > [KV XH Settings] > [Point Parameters] to set the servo drive trajectory.

|                                       | KV STUDIO - (SARME KV-6000) - (AS760N *)         |                                       |                                                                                                                 |                      | - 0 ×                                        |
|---------------------------------------|--------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------|
| <ol> <li>Click [Tools].</li> </ol>    |                                                  | DAT DER. CON COMPANY                  | RC/20 ARIE                                                                                                      |                      |                                              |
| U Click [10015].                      | Res 12 (0 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 | · DE 42 0 d 5 1                       | 1010 ALU                                                                                                        | - <u>2.</u> 2.       |                                              |
|                                       | 1.2日日開日日曜二号 10日日日                                |                                       | 開三期第20-<br>(開発を用い)-                                                                                             | 10911 *              |                                              |
|                                       | da s                                             |                                       |                                                                                                                 |                      |                                              |
|                                       | 1 9762                                           |                                       | 第三月410年後20-<br>1218年7月411日 ・                                                                                    |                      |                                              |
|                                       | 133 87-600<br>D3-(5-(77 80000 90000)             |                                       | PARCESTIC.                                                                                                      | 1 1 1                | and I constructed and                        |
|                                       | 1 [1] EF-DOUEC RMAND REIDOD                      |                                       | WEB2-                                                                                                           | TURSE MURICIPAL      | COM MIRIA N TANA N TAN BREAD BRINK MILE      |
| · · · · · · · · · · · · · · · · · · · | A BRIDE                                          |                                       | LARGER .                                                                                                        |                      | 0 0 m WD 0                                   |
| ② Choose [Extension Unit Settings].—  |                                                  |                                       |                                                                                                                 | 10                   | 0 0.m FT 0                                   |
| Cucose [Entension onit bettings]:     | + 699                                            |                                       | #E235                                                                                                           |                      | MARRIN- P                                    |
|                                       | B C RECEIVE                                      |                                       | QN中市装施公                                                                                                         | KV-5+80              | 87.846.930                                   |
|                                       | 0 4545                                           | 6 1 H02/02#/H021 0 F 240              | NERMO.00 +                                                                                                      |                      | MANUSCO .                                    |
| _                                     |                                                  | 7 3 362/02/801 0 F KV1                | TLOID BEREZ-                                                                                                    | KV-MU/MQRED +        | P demp                                       |
| ③ Choose [KV-XH Settings].            |                                                  | # 1 HO/DR/HM 07 mm                    | (addition)                                                                                                      | KV-H205/405/200/RBIM | O REAL                                       |
| G Choose [K V-All Settings].          | # 1310 H                                         | 10 1 H0/02/804 0.1                    | THE DECK                                                                                                        |                      | \$ 944634700 P                               |
|                                       | - de ana centre                                  |                                       |                                                                                                                 | KN-8062@300 +        | <ul> <li>0.00280</li> <li>0.00280</li> </ul> |
|                                       | T OF HARDS                                       | 15 1 302/02/400 0 F                   | •                                                                                                               | www.magen            | 1. SN2 (R22)                                 |
| ④ Choose [Point Parameters]           | A ROUGHE                                         | 14 1 Mac/102/Madd 0 F 127             | Contraction in the second s | KA-KERED +           | stime Ro.                                    |
| 4 Choose [Foint Farameters].          |                                                  | 14 1 Htc/02/401 0 HL                  | 1000 PLZ/s                                                                                                      | KA-NONISE(2) +       | 20歳間交相職入力。 0                                 |
|                                       |                                                  | 17 1 Ro/12E4821 0 HJ                  | 1000 FL2/4                                                                                                      | KV-L2-VR20           | 175 N.                                       |
|                                       | 5.9 GP                                           | 10 0 No.452/822 0 FG                  | 1000 PLE/s                                                                                                      | KV-LE2-VR(8/2)       | 0 0 m 100 0                                  |
|                                       |                                                  |                                       | 1800 PLE/s                                                                                                      | KV-6P21V说电图) +       | 0 0 as SUTS 0                                |
|                                       |                                                  |                                       | 1000 PLZ/s                                                                                                      | KV-LM21VIRE(Z) +     | 0 0 to 1078 0                                |
|                                       | B DEP                                            |                                       | 1000 02/1                                                                                                       | KV-CARERERU +        | 0 0 m HTH 0                                  |
|                                       | Ba 74094210                                      | 14 1 362/02/400 0 HJ                  | 1900 PLE/s                                                                                                      | 5 KV-0.20 (830-D)    | 0 0 m HTN 0                                  |
|                                       | E 0/0/1575                                       | 5 1 H2/12 / H21 0 H3                  | 1000 PLE/s                                                                                                      | KN-DN20 (REIC)       | 0 0 at HEN 0                                 |
|                                       | a degonana                                       |                                       | 1000 MLZ/*                                                                                                      | 10                   | O O as SETS O DESCRIPTION OF THE OWNER       |
|                                       | 0.0444                                           |                                       | 1000 PLZ/s                                                                                                      | 11                   | 0 0 m 923 0                                  |
|                                       | LC7 1182                                         | 20 1 H2/12 / H21 0 F11                | 1000 FL2/4                                                                                                      | 110                  | 2 2 11 123 2                                 |
|                                       |                                                  | N N HO/OT/MON O PLS                   | 1000 HS/4                                                                                                       | HHL.                 | 0 0 M HER 0                                  |
|                                       |                                                  |                                       | 1000 PLE/s                                                                                                      | 196                  | 0 0 m HTH 0                                  |
|                                       |                                                  |                                       | 1000 FLZ/+                                                                                                      | 111                  | 0 0 ms HETH 0                                |
|                                       |                                                  |                                       | 1000 PLZ/s                                                                                                      | 110                  | 0 0 as WETH 0                                |
|                                       |                                                  | >> 1 Ho/128/400 0 FLS                 | 1800 P52/s                                                                                                      | 15                   | 0 0.ms #23 0                                 |
|                                       | FR ()                                            | · · · · · · · · · · · · · · · · · · · |                                                                                                                 |                      |                                              |
|                                       | 因至 <b>点身</b> 数                                   |                                       |                                                                                                                 |                      | 381397R 992168.1.1                           |

Set the target coordinates and speed for each positioning segment based on the site requirements. After the setting is completed, the servo drive can call the corresponding [Point Number] to run using the program.

You can preview the point parameter trajectory using the following shortcut.

|                               | KV STUDIO - ISABAB KV-8000] - [ASTION *]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                                           |              | -           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |              | - 0 >             |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------------------|--------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------|-------------------|
|                               | 2560 前460 彩港公 指导法 57/88年(3) 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | NO WED IN                                 | NUM. (BOR) 2 | LAD BOM     | AIDU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |              |                   |
|                               | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | 08.48.                                    | オニロの         | 88122       | 사용으로 부가 귀 관 위                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |              |                   |
|                               | / = = F = = = = ± 0, 0, 0, = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a se se los a la | 1 11 17 101 To 1                          | 0.0 % 0.0    |             | + 108 081                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |              |                   |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | * × 11 des       | × 0.0 m/20                                |              |             | - / dia 1941                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         | (I) andepno  |                   |
| C11 1 1 1 1 1 1               | 1 1 1 1 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                                           | × 14         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | E2289        |                   |
| Click the icon to preview the | 1 1 101 10 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HIGH             | D SHEET                                   | vi 26        | 000         | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |              | 0 m 1 - RTHE      |
| chen die leon to presien die  | 1 his-1-0/27 \$20000 \$500000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | 200000                                    | 09.25        | (and)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1081 T-0                                | A 197-02     |                   |
|                               | <ul> <li>D3 00-00100 E3400 893300</li> <li>MPRESPE</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | 410-9KIX                                  | 110.251      | 1 comments  | Piget Sig infrate and mote                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 39907 8                                 | NUMBER OWNER |                   |
| point parameter trajectory.   | O MARKAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | Charles Andre -                           | 6 253        | DEED FLLA   | And in case of the local division of the loc | 96                                      |              |                   |
| point parameter trajectory.   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 1              | 100/10世代の日本<br>100/10世代の日本<br>100/10世代の日本 |              |             | Station of Concession, Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 196.<br>196.<br>196.                    | 1 months     |                   |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.5              | 接合/位置/相対<br>接合/位置/相対                      | 4 PU<br>1 PU | 1000 FLLA   | Carlo de la companya de la                                                                                                                                                                                                                                            | (94)                                    | 1.1          |                   |
|                               | B O MISTERICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.1              | RC/28/903                                 | 1 70         | 1000 PL5/   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 195                                     | 1.0          |                   |
|                               | #X88<br>0 8042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                                           |              |             | and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 秋秋秋                                     |              |                   |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                                           |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95                                      |              |                   |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.1              | Mac/128/1885                              | 0 752        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 96                                      |              |                   |
|                               | 1 R 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - N 1            | 推立/位置/相対                                  | 6 FLJ        | 1 1000 FLL/ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 195                                     | 0.5          |                   |
|                               | ● 11708<br>■ ● 114127028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20 1             | MC/02/981                                 | 1 11         | 1 1000 PLLA |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                                     | 2.4          |                   |
|                               | B DALCHUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22 1             |                                           | 1 752        | 100 5157    | Statement of the local division of the local | 196.<br>196.<br>196.                    | 4.3          |                   |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                                           |              |             | And the local division of the local division |                                         | 2.0          |                   |
|                               | . Reviging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - 14 1           | 推立/位置/银时                                  | 4 713        | 1900 FLLA   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 96                                      | 8.1          |                   |
|                               | I A HER ACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -25 1            | 推立/12世/1895                               | 4 912        | 1000 FLL    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 194                                     |              |                   |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - 36 I<br>17 I   | M12/128/1808                              | 1 14         | 1000 213/   | and the second s | 195                                     | 6 0.2        | 0.4 8.6 0.8       |
|                               | TOPUER .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | NO/122/101                                | 1 75         | 100 7555    | and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 195                                     |              |                   |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                                           | 6 715        | 1000 FLLA   | and the second s | 秋秋秋                                     | - btr        |                   |
|                               | 8949492                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18 1             | 100/122/101                               | 1 213        | 1000 FLLA   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1945                                    |              |                   |
|                               | A Strategy and the second s | - 21 L<br>- 21 L | 接应/位置/银时<br>接位/位置/银时                      | 6 712        | 1000 FLL/   | Control of the local division of the local d | 95                                      |              |                   |
|                               | E TER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | Http://12/8/48/1                          | 1 11         | 1000 712/   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 朝日の日の日の日の日の日の日の日の日の日の日の日の日の日の日の日の日の日の日の |              |                   |
|                               | B 740820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28 1             | 100/128/100                               | 1 753        | 1000 7154   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                                     | 2.6          |                   |
|                               | 10 0/2/12/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16 1             | 180/128/1911                              |              |             | Distance of the American Street Stree | 95                                      | 2.4          |                   |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36.3             | 除在/投票/银行                                  | 4 752        | 1000 7124   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1945<br>1945                            | 3.5          |                   |
|                               | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27 1             | 独立/位置/401<br>独立/位置/401                    | 1 813        | 1000 FLLA   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 194                                     |              |                   |
|                               | 0 0 00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21               | HEC/128/401                               | 1 74         | 1000 711/   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 198.<br>196.                            | 2 22         | 0.4 0.0 0.0       |
|                               | 1 07 0W2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | HO/07/98                                  | 1 71         | 100 715.5   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 175                                     |              |                   |
|                               | - APACH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21.1             | HRQ/12世/HR1                               | + P15        | 1000 2154   | second of the second se | 195.<br>195.                            | 181 HEILE V  |                   |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 38.3             |                                           | 1 715        | 1000 2154   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1945                                    | ANC818       |                   |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36.1             | 1812/12世/1891<br>1810/12世/1891            | 4 193        | 1000 PLL/   | Carlos A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 198.<br>198.                            | 1985         | Siziria .         |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 34 1             | HQ/02/WH                                  | 0 712        | 1000 712/   | and the second sec                                                                                                                                                                                                                                             | 195                                     | ANT. Mar.    | 100               |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 26 1             | MG/12書/WH                                 | 1 71         | 100 7114    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 116.<br>196                             | 21. 11.      |                   |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | Bab talar and                             |              |             | and the second s |                                         |              | COLUMN ADDRESS OF |
|                               | が二面                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                                           |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |              |                   |
|                               | 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                                           |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |              | A LOOK 192.168.1. |


The ladder diagram can be compiled using conventional methods. At the same time, KEYENCE provides a method of quickly compiling common functions.

① Drag the [Point Parameters] window down and zoom out the window to the appropriate position.

| lick [Point Parameters] ———<br>Id drag it down. | E CONTRACTOR                          | * (c) ater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                |                |             |
|-------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------|----------------|-------------|
|                                                 | # 1 9/4%                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | 12 × 844 | ×                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | . 01 87.085    | 104/1          |             |
| 1.1 5.1                                         |                                       | HERE AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S NAME                     | - 19 -   | 6 0 0                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 20582<br>#8500 | 101 WW 101 W 1 | - 8010      |
|                                                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |          | 2502                     | awithat .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                | 5 W.D. M.I     | - PUTTY A   |
| id drag if down                                 | · 1 111 IN-DIGHT KINGO DOLOOF         | n 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AND MARKS                  | B624     | 200000                   | 12121031 ISHITER ISHIERIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2044              |                | COMBING OF     | And in case |
| a arag it do initi                              | L Water                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A REAL PROPERTY AND INC.   | 0.852    | 1000 212/1               | the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 96                | 8.0            |                | -           |
|                                                 |                                       | 2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 独立/位置/新社                   | 0 812    | 1000 212/4               | the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1941              | 1.0            |                |             |
|                                                 |                                       | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 接合/位置/相对<br>接合/位置/相对       | 0 83     | 1000 215/1               | and the statement of the statement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *******           | 0.0            |                |             |
|                                                 | 20/02/2018                            | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 142-12里/183<br>142-12里/183 | 5 MS     | 1000 FLS/1               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1912              |                |                |             |
|                                                 | and a second                          | 1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | 0.752    | 1000 712/4               | the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1915              |                |                |             |
|                                                 |                                       | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | 0 512    | 1000 212/4               | starting in case of the local division of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (111)             | 0.0            |                |             |
|                                                 |                                       | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 林立/白雲/東西                   | 0.814    | 1000 315/4               | State South Street Stre | 1910              | 0.5            |                |             |
|                                                 | W 72                                  | 1.5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 補益/位置/相比<br>補益/位置/相比       | 0.815    | 1000 FLL/4               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1941              |                |                |             |
|                                                 | # 00x200                              | 11 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 推立/位置/影灯                   | 0.55     | 1000 212/1               | the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 「「「「「「」」」」」       |                |                |             |
|                                                 | THE DRIVER                            | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | 174      | 1300 312/1               | and a contract of the local division of the  | 1445              | 0.3            |                |             |
|                                                 |                                       | 12 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | 0 752    | 1000 712/4               | C Inc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 仲化                | 0.2            |                |             |
|                                                 | RAUGOS                                | 14 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 80/02/88                   | 0.815    | 1300 215/4               | AND GOVERNMENT OF THE OWNER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1910              | 0.1            |                |             |
|                                                 | B (1) 127 45 108                      | - 15 - 1<br>- 16 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 843/122/821<br>943/122/821 | 0 252    | 1000 315/4               | State of the local division of the local div |                   |                |                | 1           |
|                                                 |                                       | 1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 補白/白眉/銀灯                   | 0.752    | 1000 755/1               | the other designs and the second distance of the local distance of | 1045              |                | 82 84 0        | 4 0.8       |
|                                                 |                                       | 10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | 0.812    | 1300 812/4               | and it is successful to succes | 1945              |                |                |             |
|                                                 |                                       | 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 独立/位置/翻过                   | 0 852    | 1300 255/4               | and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 神机                | 11.11          |                |             |
|                                                 | 20.80 g 0                             | 1.20.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 独立/位置/取引<br>独立/位置/取引       | 0 212    | 1000 PL5/v               | the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1910              | 1.00           |                | _           |
|                                                 | A LAND THE                            | HQ13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 82/12/81                   | 1 74     | 1000 252/4               | the second secon | <b>新新田家新新新</b> 新新 |                |                |             |
|                                                 |                                       | 1-211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            | 0.712    | 1000 715/4               | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1940              | 2.4            |                |             |
|                                                 | to 70522                              | 24 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | 0.852    | 1000 312/+               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1945              |                |                |             |
|                                                 |                                       | 25 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 補白/白星/新社                   | 0 812    | 1000 312/4               | and the second designed in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1991              | 84             |                |             |
|                                                 |                                       | -8.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 後の代生業/第2日<br>後の代生業/第2日     | 5 HJ     | 1000 215/s<br>1000 215/s | the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 教授の教授             | 0.2            |                |             |
|                                                 | · · · · · · · · · · · · · · · · · · · | Letter and the second sec | 10/12 / 101                | 0 15     | 100 7571                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 177.              |                |                |             |
|                                                 | 1 124 0168                            | 1211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | 0.752    | 1300 212/1               | and the summary summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1410              |                | 82 84 8        | 6 6.8       |
|                                                 | a A 8/26                              | 30 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 独立/位置/铜动                   | 0 712    | 1300 313/4               | the C. second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 195               |                |                |             |
|                                                 |                                       | 25 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 接立/位置/制制<br>转位/位置/制制       | 0 81     | 1300 FLL/s<br>1300 FLL/s | the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1711              | IN DOTE        |                |             |
|                                                 |                                       | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 特点/白星/部門                   | 0 150    | 1000 855/4               | the local data and the local dat | 1791              | 201223         |                |             |
|                                                 |                                       | 1995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 補白/白星/第21                  | 0.753    | 1000 812/4               | the Colombia and the Co | ***<br>***<br>*** | 1282           |                | 1.418       |
|                                                 |                                       | 26 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 地立-位置/制改<br>地立-位置/制改       | 0 85     | 1000 FLL/s               | And in case of the local division of the loc | (14)<br>(14)      | 1945 BAR       |                |             |

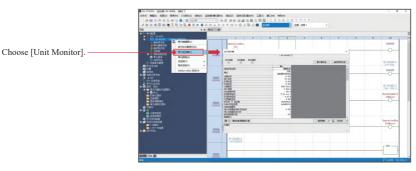
2 Move the mouse over the point parameter, such as "No.1 Axis 1". The mouse icon changes from an

arrow to a hand shape. Right-click and drag it to the program editing interface. The following shortcuts pop up.

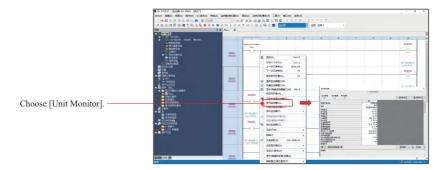


③ Select the required function. For example, click [Action Enable] to automatically generate a DEMO program. Specify the red part as the required relay, so that the function compilation is completed.




④ Start the unit monitor.

The unit monitor provides the function of monitoring the operating status or internal data of KV XH16EC.


|                   | KV STUDIO - [EE258: KV-8080] - [B[42;*]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                        | - 0 x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | 文件(2) 機構(2) 採用(2) 服果(2) 非代                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   | i 🗅 🧰 🖬 ili 🕸 🕼 🖶 🕼 j 🖭 j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · · · · · · · · · · · · · · · · · · ·                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   | 2日日開始日間 5000 9 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ■ II H A H H Y H > 0 · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.1 . 0.4         | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IX fair X Real                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Select [Monitor]. | <ul> <li>********</li> <li>********</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   | (1) EP-6000<br>(1) EP-20040C R04000 (M0500)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 2 90.0                                               | 7 8 9 10 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Operation State                                        | 834000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   | 0 時元時尚公室<br>6 時間を行用                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OperationExa<br>ble                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00001                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00000                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | and the second se |
|                   | COLUMNARY IN COLUMN IN COLUMNI IN COLUMNI IN COLUMN IN COLUMNI IN C |                                                        | EV-335.60C [1<br>]-0-17 4E-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | 804000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   | <ul> <li># SHCTCS</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00002                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   | CTT FALLER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 000000                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | 87-30388211<br>2941 5408 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   | 170-2.819                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 840000 840005                                          | ReadyComplet<br>edition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                   | 1.0 (D)<br>202 (D) (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        | ethelay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                   | #10875-0P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00003                                                  | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   | <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   | No 71212240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RF-INDEC[1 EF-INDEC[1<br>10/FHUR 1941 HERE             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   | to division                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 840000                                                 | OperationIna<br>bletzvor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                   | 1.010 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   | B - 10728                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00004                                                  | Ŭ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                   | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 87-0008711<br>1-01/1993/87                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1407 KKW                                               | - 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | L 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                   | No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   | 128230 (htt N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00005                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   | REB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

The methods of starting the [Unit Monitor] are as follows:

 Select the target unit to monitor in the work area unit composition, right-click it, and choose [Unit Monitor].



• Right-click in the blank space of the [Main] program and choose [Unit Monitor] from the pop-up menu.



The unit monitor can display the operating status of each axis. To change the monitored items of the operating status, click [Monitor Item Settings] in the upper right corner.

|                                   | 单元监控器          |                                                                           |                   | ×      |
|-----------------------------------|----------------|---------------------------------------------------------------------------|-------------------|--------|
|                                   |                | 1: KV-KH16EC[1]                                                           |                   |        |
| Click [Monitor Item Settings]     | 动作使能 动作就绪 单元描误 |                                                                           | 显示独设定             | 监控项目设定 |
| Click [Monitor Item Settings]. —— |                | 14年<br>14月<br>14月<br>14日<br>14日<br>14日<br>14日<br>14日<br>14日<br>14日<br>14日 | 型字轴成字 —<br>描示测诊 ~ | <      |

To check whether the I/O signals are normal, such as the signals of the PL and NL switches and home switch, start the [Unit Monitor] and find the corresponding monitoring position. If the corresponding signal is received, a black dot appears.



Information about the unit, such as the error state, can also be displayed in the [Unit Monitor]. In addition, you can click [Error Clear] in the lower right corner to clear the axis error of the corresponding axis.

# 12.1.3 Trial Run

You can confirm the action by using the trial run function, without programming the ladder diagram program.

- ① Click [Trial Run] in the lower right corner of the [Unit Monitor].
- ② Select the control mode.
- ③ Select the axis for the trial run.

|                               |                             | 1: XV-XH168C[1] |                                         |                    |
|-------------------------------|-----------------------------|-----------------|-----------------------------------------|--------------------|
|                               | 动作使能 动作就绪 单元错误              |                 | 显示抽设定 监控项目设定 -                          | -                  |
|                               | 停止传感器检测次数                   | (編1:            | ^                                       |                    |
|                               | 驱动器报警代码                     | 000             |                                         |                    |
|                               | 始請退中<br>始娶古中                | -               |                                         |                    |
|                               | 独控制中                        |                 |                                         |                    |
|                               | 妮幼習限制中                      | -               |                                         |                    |
|                               | 驱动警告<br>驱动器报警               |                 |                                         |                    |
|                               | 单元程序错误                      | -               |                                         |                    |
|                               | 单元程序警告<br>個編OS              | -               |                                         |                    |
|                               | 10月前10月                     |                 |                                         |                    |
|                               | 同步控制外部输入                    | -               |                                         |                    |
|                               | 正方向跟位开关<br>负方向跟位开关          |                 |                                         |                    |
|                               | 原点传感器                       | -               |                                         |                    |
|                               | 停止传感器<br>依据结束               |                 |                                         |                    |
|                               | 15.004米<br>控制周期处理 执行时间(最大值) | 75.1 95         |                                         |                    |
|                               | 控制周期处理 执行时间(当前值)            | 45.5 us         |                                         |                    |
| Click [Trial Run].            | 28 二 市市社会に発展した店             |                 | 112 112 112 112 112 112 112 112 112 112 | 定位(P)              |
|                               | 无描误                         |                 |                                         | 定位(P)<br>速度控制(S)   |
| Select the control mode and a |                             |                 |                                         | 速度控制(5)<br>转版控制(T) |

# NOTICE

• A warning will occur when you attempt to perform a trial run in [Speed Control Mode] or [Torque Control Mode]. When performing a trial run, set the control mode to [Position Control Mode].

Choose [Trial Run] > [Position Control] as an example.



### Action Enable, S-ON

Regardless of the status of the ladder diagram program, [Commissioning] can enable the action and switch on the S-ON signal. Upon successful completion, the [Action Ready] and [Servo Ready] indicators turn green. To ensure safety, set the CPU unit to the PROG mode and stop the ladder diagram program before performing the operation.

If the Servo Ready indicator does not turn green, confirm the following points:

- Whether an axis error occurs.
- Whether a servo drive alarm is reported.
- Whether the main circuit power supply of the servo drive is connected.
- Whether the Ethernet cable is connected.

#### Axis Error/Axis Error Clear

When an axis error occurs, check the error content and clear the error. After eliminating the cause of the error, click [Clear Error].

### JOG

Click [Positive Direction] and [Negative Direction], so that the servo drive jogs in the positive direction and negative direction respectively. In case of [Axis Control General Setting] > [JOG High Speed], the servo drive runs at a speed multiplied by a certain ratio. The ratio can be set in increments of 1% between 10% and 100%.

## Inch

Click [+ Direction] or [- Direction], so that the servo drive inches in the positive direction and negative direction respectively. Choose [Axis Control General Setting] > [Inching Startup Speed]. The servo drive runs according to the movement distance set in [Axis Control General Setting] > [Inching Distance].

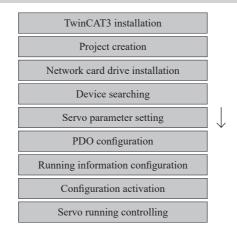
## Homing

After you click [Homing], the servo drive performs homing.

## Teaching

After you click [Load], the current instruction coordinate value is stored in the buffer memory of the target coordinate of the specified point number. The teaching function can be performed only in online editing mode. The value of teaching is reflected in both the buffer memory and the point parameters.

## Trial Run


Specify the point number. After you click [Start], the servo drive can perform point positioning. After you click [Stop], the servo drive stops. In the case of [1-point running], the servo drive performs point positioning of the specified one point. In the case of [continuous running], the servo drive can perform point positioning of up to 10 continuous points. After [Loop] is checked and point positioning of the bottom line is completed, the servo drive returns to point positioning of the first line for repeated execution. The standby time to switch to the next point can be set in the range of 0.1s to 20.0s.

## **Change Current Coordinate**

After you click the instruction coordinate, the [Change Current Coordinate] dialog box pops up. Enter the target coordinate to change, click [Change] to change the current coordinates of the axis in trial run, and close the [Change Current Coordinate] dialog box. After you click [Close], the current coordinate does not change. Close the [Change Current Coordinate] dialog box.



# 12.2 JSS715N and Beckhof PLC Confguration



## 12.2.1 TwinCAT3 installation

Install the host controller software (TwinCAT3) of Beckhoff PLC.



Operating system and hardware requirements:

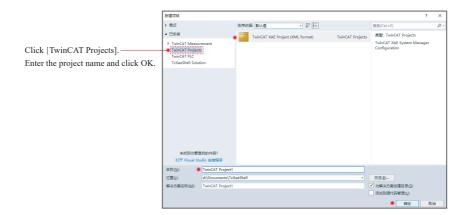
| Operating system | Windows 7 (with the Service Pack 1 patch)<br>Windows 10 Professional/Enterprise editions (only supporting TwinCAT 3.1.4020 and<br>above) |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Network card     | Ethernet card of Intel 100 Mbit/s and above (Other network cards may not support TwinCAT3 or have poor stability.)                       |



 Windows 10 Home/Education editions are not recommended, as the system may crash when switching to the run mode.

Add the device description file (JSS715N\_sAxis\_V0.07.xml) to the EtherCAT device directory of TwinCAT3 (for example, C:\TwinCAT\3.1\Config\Io\EtherCAT).

|                              | 文件 主    | 页 共享 查看                  |                  |        |              | Ŷ  |
|------------------------------|---------|--------------------------|------------------|--------|--------------|----|
| Confirm the path.            | ÷ ÷ •   | TwinCAT > 3.1 > Config   | > Io > EtherCAT  | v 0 x  | 在EtherCAT中搜索 |    |
|                              | ^       | 名称 ^                     | 修改日期             | 类型     | 大小           |    |
|                              | * 5     | Beckhoff AX5xxx          | 2022/6/23 17:31  | 文件夹    |              |    |
|                              |         | RES                      | 2022/6/23 17:31  | 文件实    |              |    |
| Add the device description — | *       | JSS 700N_sAxis_V0.07.xml | 2022/6/20 11:24  | XML 文档 | 308 KB       |    |
| 1                            | 8       | Beckhoff AMI8xxxxml      | 2021/3/27 9:11   | XML 文档 | 398 KB       |    |
| le of the XML format.        |         | Beckhoff APS1xxx.xml     | 2019/9/9 9:24    | XML 文档 | 218 KB       |    |
|                              |         | Beckhoff APS4xxx.xml     | 2020/11/23 11:36 | XML 文档 | 233 KB       |    |
|                              |         | Beckhoff AT2xxx.xml      | 2020/10/5 13:22  | XML 文档 | 9,868 KB     |    |
|                              |         | Beckhoff ATH2xxx.xml     | 2020/9/7 14:47   | XML 文档 | 1,488 KB     |    |
|                              |         | Beckhoff AX2xxx.xml      | 2015/11/20 11:18 | XML 文档 | 290 KB       |    |
|                              |         | Beckhoff AX5xxx.xml      | 2020/2/11 15:00  | XML 文档 | 1,165 KB     |    |
|                              | 🛄 B     | Beckhoff AX8yxx.xml      | 2020/5/13 11:45  | XML 文档 | 24,006 KB    |    |
|                              | -       | Beckhoff AX86xx.xml      | 2020/6/22 11:16  | XML 文档 | 8,633 KB     |    |
|                              | -       | Beckhoff AX88xx.xml      | 2019/6/27 12:15  | XML 文档 | 386 KB       |    |
|                              |         | Beckhoff BKxxxxxml       | 2016/7/15 13:24  | XML 文档 | 1,912 KB     |    |
|                              |         | Beckhoff CUxxxx.xml      | 2021/2/19 10:00  | XML 文档 | 289 KB       |    |
|                              | = -     | Beckhoff CXxxxxxml       | 2021/1/8 13:43   | XML 文档 | 128 KB       |    |
|                              | 107 个项目 | 选中 1 个项目 307 KB          |                  |        |              | BE |


# NOTICE

• The device description file is maintained and updated irregularly. If you need the latest version, contact us.

# 12.2.2 Project creation

Run the TwinCAT3 program and create the TwinCAT3 project.

|                              | Twin <b>CAT</b> 3                                                        | BECKHOFF                                                    |  |
|------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------|--|
| Create New TwinCAT Projects. | 最近<br>今天<br>WinCAT Project1.sin<br>dtDocumentsTCKoeSheftTwinCAT Project1 | Open registri Salation<br>所建项目<br>Mure Work(21 Project.     |  |
| clear new twitcht trojects.  |                                                                          | Nor Measurement Pages.           RESIDES         Р -        |  |
|                              |                                                                          | Twick1704E https://www.twick1?htps://www.twick1?htps://www. |  |

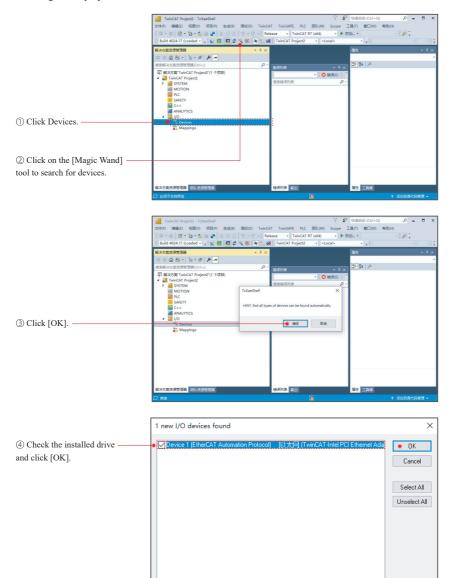


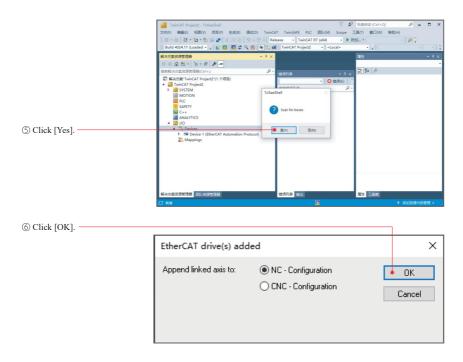
# 12.2.3 Network card drive installation

After creating a project, click the [TwinCAT] drop-down menu and select [Show RealTime Ethernet Compatible Devices].

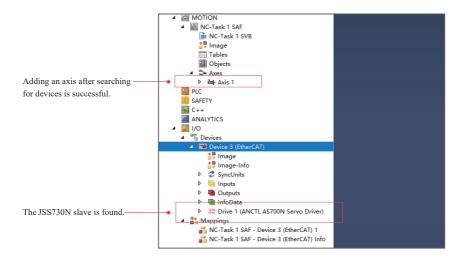
| Click [Show RealTime Ethernet ——<br>Compatible Devices]. | InicAT Pupic2 - Tokashel     ZMR7    Real | 観灯(D) ● TwinCAT TwinSAFE PLC 田以(M) Scope<br>で Windows | Organa Control     Organa Control     Organa     O | P = 0 ×<br>Nkbog<br>- 2 ×<br>- 2 ×<br>System<br>Eubed<br>Tinc |
|----------------------------------------------------------|-------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
|                                                          | 口就编                                       |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ↑ 添加到课代码管理 -                                                  |

Select a local network card and click [Install].


|                                                      | Installation of TwinCAT RT-Ethernet Adapters | ×                                                                                        |
|------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------|
| Select a local network card ————and click [Install]. | Ethernet Adapters                            | Update List<br>Install<br>Update<br>Bind<br>Unbind<br>Enable<br>Disable<br>Show Bindings |

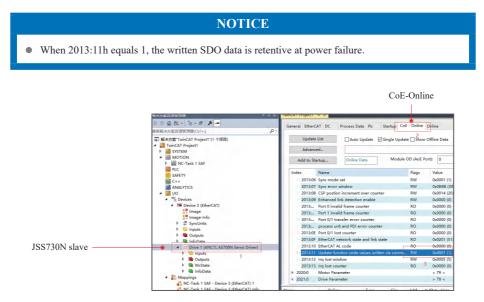

The installation is completed, as shown in the figure below.

| Installation of TwinCAT RT-Ethernet Adapters | × |
|----------------------------------------------|---|
| The TwinCAT network card                     |   |


# 12.2.4 Device searching

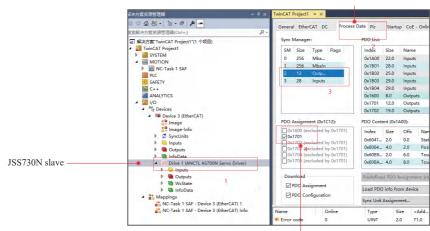
After creating a new project, start to search for devices.






Searching for devices is successful, as shown in the figure below.




## 12.2.5 Servo parameter setting

Users can view and configure servo parameters on the [CoE-Online] interface as needed.



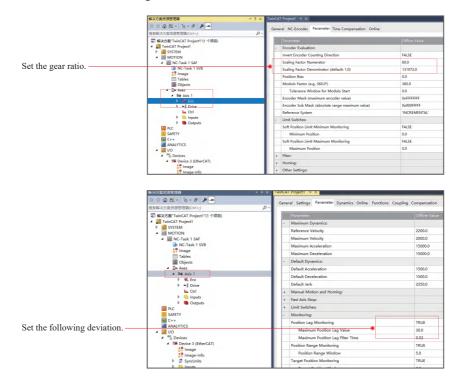
### 12.2.6 PDO configuration

PDO defaults to groups 0x1701 and 0x1B01. Users can reserve or choose to use other groups as needed.



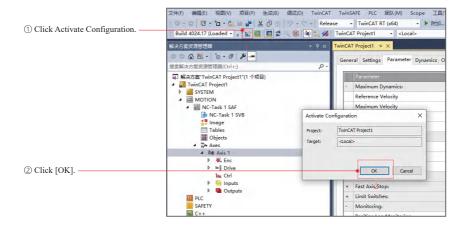
Group selection

Process Data

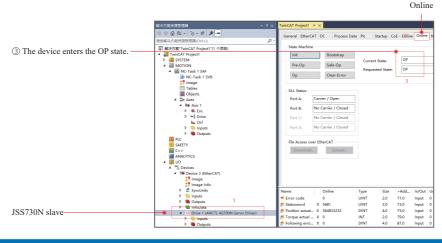

# NOTICE

- Groups 0x1600 and 0x1A00 are freely configurable, supporting the addition and subtraction of
  objects, and other groups have fixed configuration.
- When using ECAT's PLC, if you choose a PDO group with a torque limit value (such as group 1703) and then choose a group without torque limit (such as group 1600) before powering off the servo drive, once the torque limit is defaulted to 0, the motor will be powerless. In this case, the servo drive can continue to run if you re-power it or restore the PDO parameters.

# 12.2.7 Running information configuration


Set the gear ratio and following deviation on TwinCAT according to the encoder adapted by the servo drive.

• For a 17-bit encoder, the gear ratio is 131072: 60, and the deviation is set to 30.




## 12.2.8 Configuration activation

Click [Activate Configuration], and click [OK] in the pop-up dialog box.



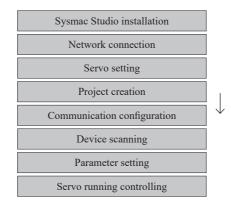
After confirmation, switch to the [Online] interface and observe whether the device enters the OP state.



# NOTICE

 After the device enters the OP state, [88rd] is displayed on the keypad of the servo drive, indicating that the servo network is working normally.

# 12.2.9 Servo running controlling


Enable the servo drive:

|                                       | 解决方案资源管理器 + ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X TwinCAT Project1 4 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       | ○ ○ ☆ 部 - '◎ - <i>●</i> ▶ -<br>検索解決方案資源管理器(Ctrl+;)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | General Settings Parameter Dynamics Online Functions Coupling Compensation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ) Click to switch to<br>xis settings. | Example The Carl Register (1) + 40E()     Example The Carl Register | 258560.1338         Selection Provide           Lap Distance (implimad) mml         Actal Velocity         mml           Lap Distance (implimad)         mml         Actal Velocity         mml           Operride         0.000         0.000         0.000         0.000           Operride         0.000         1.000         0.000         0.000         0.000           Operride         0.000         1.000         0.000         0.000         0.000         0.000           Galaxie (log)         Static (log)         Coupled Mode         Coupled Mode         Centroline         Feed for           Cottooline To-Factor         Interper Velocity         Interper Velocity         Feed for         Terreget Position         Feed for         X           Target Position         Interper Velocity         Feed for         Centroline To Feed for         X           Target Position         Interper Velocity         Feed for         X         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y </td |

Click [F1], [F2], [F3], and [F4] for servo jogging.

|     | General Settings Parameter Dynamics Online Functions Coupling Compensation                                                                                                                                                                                           |    |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|     | 258560.1338 Setpoint Position: mm<br>258560.1338                                                                                                                                                                                                                     | ÷  |
|     | Lag Distance (min/max):         mm]         Actual Velocity:         [mm/s]         Setpoint Velocity:         [mm/s]           0.0000         (-0.000, 0.001)         -0.0001         0.0000         0.0000                                                         | ÷. |
|     | Override:         [%]         Total / Control Output:         [%]         Error:           100.0000 %         0.00 / 0.00 %         0 (0x0                                                                                                                           | )  |
|     | Status (log.)       Status (phys.)       Enabling         Ø Ready       NOT Moving       Coupled Mode       Ø Controller         Calibrated       Moving Fw       In Target Pos.       Ø Feed Fw         Has Job       Moving Bw       In Pos. Range       Ø Feed Bw |    |
|     | Controller Kv-Factor: [mm/s/mm] Reference Velocity: [mm/s<br>2200                                                                                                                                                                                                    | 1  |
|     | Target Position:     [mm]     Target Velocity:     [mm/s]       0     ↓     0                                                                                                                                                                                        | ]  |
| ing | • F1 F2 F3 F4 F5 F6 F6 F8 F9                                                                                                                                                                                                                                         |    |

# 12.3 JSS715N and Omron NX1P2 Confguration



# 12.3.1 Sysmac Studio installation

Install Omron Sysmac Studio of V1.45 or above.

| Sysmac Studio - InstallShield Wizard | ×  |
|--------------------------------------|----|
| 安装状态                                 |    |
| Sysmac Studio 安装程序正在执行所请求的操作。        |    |
| 正在更新组件注册表                            |    |
| InstallShield                        |    |
|                                      | 取消 |

Add the device description file (JSS715N\_sAxis\_V0.07.xml) to the Sysmac Studio directory (for example, C:\Program Files (x86)\OMRON\Sysmac Studio\IODeviceProfiles\EsiFiles\UserEsiFiles).

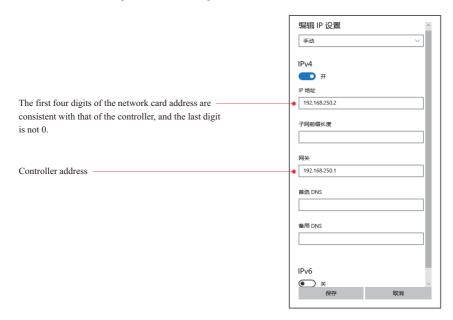
|                            | 2/4 #   | v │UserEsiFiles<br>页 共享 查看 |                            |                     |        |     |                      | - 0 | ×      |
|----------------------------|---------|----------------------------|----------------------------|---------------------|--------|-----|----------------------|-----|--------|
| Confirm the path.          | ( ) ··· | ,                          | o > IODeviceProfiles > Esi | Files > UserEsiFile | 15     | ~ 0 | ク 在 UserEsiFiles 中限素 |     |        |
| •                          | **      | 88                         | 修政日期                       | 英型                  | 大小     |     |                      |     |        |
| Add the device description |         | AS700N_sAxis_V0.07.xml     | 2022/6/20 11:24            | XML 文档              | 308 KB |     |                      |     |        |
| file of the XML format.    | +       |                            |                            |                     |        |     |                      |     |        |
|                            | 1       |                            |                            |                     |        |     |                      |     |        |
|                            |         |                            |                            |                     |        |     |                      |     |        |
|                            | i i     |                            |                            |                     |        |     |                      |     |        |
|                            |         |                            |                            |                     |        |     |                      |     |        |
|                            | 1 个项目   | 西中 1 个项目 307 K8            |                            |                     |        |     |                      |     | 100 00 |
|                            | 1.1.2次日 | aarte i conseal over KB    |                            |                     |        |     |                      |     | 192    |

# NOTICE

- When placing the XML file in this path for the first time, restart Sysmac Studio.
- The device description file is maintained and updated irregularly. If you need the latest version, contact us.

# 12.3.2 Network connection

JSS715N and Omron NX1P2 can be connected by USB (two segments of wiring: Type-c to serial port, serial port to USB) or a network (Ethernet port).


USB direct connection:



Click [Connect].

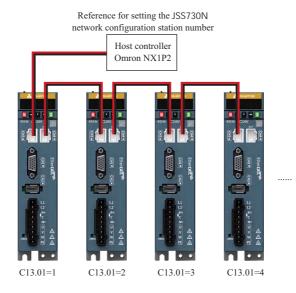
Ethernet direct connection:

Set the IP address of the computer to the same segment as the PLC.



#### 12.3.3 Servo setting

Confirm the servo software version.


Recommended test version: The MCU version of JSS715N single board software is "U42.00=201.5" or above.

Set servo related parameters.

| Parameter | Name                 | Value Range | Default | Modifica-<br>tion Mode | Effective<br>Time | Setpoint              |
|-----------|----------------------|-------------|---------|------------------------|-------------------|-----------------------|
| C13.01    | EtherCAT slave alias | 0-65535     | 0       | At stop                | Immediately       | Value other<br>than 0 |

# NOTICE

- When using Omron controller, it is necessary to set the EtherCAT communication station number by using C13.01. It is recommended to set the number according to the actual physical connection order for easy management and configuration.
- After setting C13.01, power on again.



# 12.3.4 Project creation

# NOTICE

- A single servo drive is used as an example.
- NX1P2-1140DT only supports version 1.13.

Start Sysmac Studio and create a project.



Click [Create].

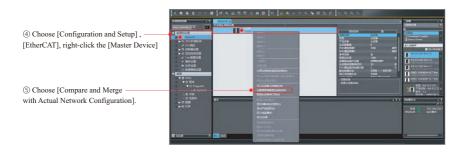
#### 12.3.5 Communication configuration

After entering the main screen, choose [Controller] > [Communication Configuration] and set the way of connection between the computer and the controller.

|                                      | AS700N - new_Controller_0 - Sysmac Stu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | dio (32bit)        |                                                 | - 🗆 X                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      | 文件(F) 编辑(E) 视图(V) 插入(I) 工程(P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    | 具(T) 官口(W)                                      |                                                                                                                                                                                                                                                                                                                                                                 |
| Click [Communication Configuration]. | X @ @ @ > < @ #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 通信设置(C)<br>支更设备(V) |                                                 | HQQU                                                                                                                                                                                                                                                                                                                                                            |
|                                      | RRUNUSA     Reconstruction     Reconstructi | 在城(O)<br>周治玉(F)    | Ctrl+W<br>Ctrl+Shift+W<br>Ctrl+M<br>Ctrl+M<br>P | <br>THE     V       The Commentation     V       Analog Commentation     V       B EString Procession     V       D EString Procession     Commentations       Comment Control     Data Monement       D Data Monement     Data Monement       D Data Monement     Point apper Commention       Pice     Match       Mathin     Control       Collar     Collar |
|                                      | □ 其法者 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                                                 |                                                                                                                                                                                                                                                                                                                                                                 |

- Select [USB-Remote Connection]: Directly perform the "USB Communication Test". If the test is successful, proceed to the next step.
- Select [Ethernet-Hub Connection]: Set the IP address to the controller IP address (192.168.250.1), and then perform the "Ethernet Communication Test". If the test is successful, proceed to the next step.

|                                          | <b>國</b> 通信设置                                                                  | – 🗆 🗙 |
|------------------------------------------|--------------------------------------------------------------------------------|-------|
|                                          | -<br>▼ 连接类型                                                                    |       |
| ① Select [Ethernet-Hub Connection].      |                                                                                | *     |
| ② Set IP address (same as the controller |                                                                                |       |
| IP address).                             | ▼ 远程IP地址                                                                       |       |
| ii address).                             | 指定远程IP地址。                                                                      |       |
| ③ Click [Ethernet Communication Test].   | TRALEAGEDF ADAL.<br>192.168.250.1_<br>USB通信期试<br>USB通信期试                       |       |
| ©[                                       | 测试成功                                                                           |       |
|                                          | ▼选项                                                                            |       |
| Test result display.                     | <ul> <li>○ 在线时输入序列D。</li> <li>○ 盈线时检查强制刷新。</li> </ul>                          |       |
|                                          | ▼ 48度监測时间<br>在与均据的通信中设置确定监测时间。(1-3600份)<br>当局过多不网络如VPN进展注报到控制高时,请议置足够大的值。<br>2 |       |
|                                          | 确定 取消                                                                          |       |
|                                          |                                                                                |       |


If the test is successful, click [OK].

# 12.3.6 Device scanning

Switch the controller to the [Online] running mode.

|                                              | AS700 - new_Controller,0 - Sysmac Studio (32bi)           | 0 X          |
|----------------------------------------------|-----------------------------------------------------------|--------------|
| (1) Clipterter [Outinellines                 | 文中····································                    | _            |
| <ol> <li>Click the [Online] icon.</li> </ol> | X & B B D C D # A 当日日 # A B R A A A A A A A O G Z 社 Q Q U |              |
|                                              | F48X58 - 1                                                | - 1          |
|                                              |                                                           |              |
|                                              | ► TERNOR<br>■ 1992                                        |              |
|                                              | ▼ (2) FOU:<br>▼ (2) FB/F                                  |              |
|                                              | T E Propand                                               |              |
|                                              | 1. X D20                                                  |              |
|                                              | # 二 前接<br>▶ 15 任务                                         |              |
|                                              |                                                           |              |
|                                              |                                                           |              |
|                                              |                                                           |              |
|                                              | 93 - 7 × 1930/2                                           |              |
| ② Observe the controller ———                 |                                                           | 92.168.250.1 |
|                                              |                                                           | 1716215      |
| status.                                      |                                                           |              |
|                                              | I 738 0 III 53                                            | - 101        |
|                                              |                                                           | - 112        |
|                                              |                                                           |              |
| New control                                  | ller prompt pop-up window. Sysmac Studio                  |              |
| New control                                  | ner prompt pop-up window.                                 |              |
|                                              | CPU单元设有名。                                                 |              |
|                                              | 确定要把[new_Controller_0]写为工程的CPU单元名吗? (                     |              |
| 0 000 0 000 0                                |                                                           |              |
| ③ Click [Yes].                               |                                                           |              |
|                                              |                                                           |              |

Device scanning:



# NOTICE

• The controller automatically scans all slaves in the network. A fault will be reported if any station number is 0.

#### Slave adding:

| Pop-up window upon                                    | ■ 同物理网络配置的比较和合并          |                      |                             | - 1             | ×         |
|-------------------------------------------------------|--------------------------|----------------------|-----------------------------|-----------------|-----------|
| scanning completion.                                  | 节点地址/Sysmac Studio上的网络设置 | 节点地址 物理网络配置          | Sysmac Studio 比較結<br>主设論 匹配 | # 物理网络配置<br>主设备 | \$0/67E32 |
|                                                       |                          | 1 CHASTON Serve Driv |                             | 1 : ANCTL AS7.  |           |
| © Click [Apply Physical ——<br>Network Configuration]. |                          | 7(8)                 |                             |                 |           |

After the slave is added, click [Close].

| The added slave is displayed — | 20.0         4.0         5.0         0.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0 </th <th>63560 6<br/>63560 6<br/>622 258<br/>622 258<br/>7620 2580<br/>7620 2580<br/>7620 2580<br/>7620 2580<br/>76200</th> | 63560 6<br>63560 6<br>622 258<br>622 258<br>7620 2580<br>7620 2580<br>7620 2580<br>7620 2580<br>76200 |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| on the home page.              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                | • K DAN<br>• K DAN<br>• R DA<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

#### 12.3.7 Parameter setting

Switch the controller to the offline mode, and set the PDO mapping, axis parameters, and DC.

PDO mapping settings:





# NOTICE

• When using ECAT's PLC, if you choose a PDO group with a torque limit value (such as group 1703) and then choose a group without torque limit (such as group 1600) before powering off the servo drive, once the torque limit is defaulted to 0, the motor will be powerless. In this case, the servo drive can continue to run if you re-power it or restore the PDO parameters.

#### Axis parameter configuration:

Add a motion control axis.



Axis setup:

# NOTICE

• Right-click the axis name to change it, such as renaming (Chinese is also acceptable). If the name is "Rewinding Axis", then using the axis variable "Rewinding Axis" in the NX program represents controlling this JSS715N servo axis.

| Right-click the axis name to rename it. |                                                    | 11 전 전 12 |
|-----------------------------------------|----------------------------------------------------|-----------------------------------------|
|                                         | が Cam数据设置<br>▶ 専件设置<br>■ 住分设置<br>※ 数据期始设置<br>▶ [編集 | 第初70<br>第100<br>副時の)<br>重命者(の)          |

Double-click the axis name, and configure the JSS715N device of the corresponding station on the basic settings page.



Axis number: Number of the servo Ethernet communication station, value of C13.01

Axis usage: Axis in use

Axis type: Servo axis

Output device 1: Select this servo.

| Detail Setup |                 | MC Avest00 (MACI) ×<br>1 抽基本设置<br>2 抽基本设置<br>5 通 1 AVCIL AS7000 Serve D<br>4 通 2 < 4 5 月 2<br>4 知 2<br>4 知 2<br>5 通 1 AVCIL AS7000 Serve D<br>4 知 2<br>5 通 1 AVCIL AS7000 Serve D<br>5 回 5 回 5 回 5 回 5 回 5 回 5 回 5 回 5 回 5 回 |                                             |           |  |
|--------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------|--|
|              |                 | 功能名称                                                                                                                                                                                                                         | 设备                                          | 讨得数据      |  |
|              |                 | - 輸出(控制碼到设备)                                                                                                                                                                                                                 |                                             |           |  |
|              | _= =            | * 1. Controlword                                                                                                                                                                                                             | 节点:1 ANCTL AS700N Servo Dri ▼               |           |  |
|              |                 | ★ 3. Target position                                                                                                                                                                                                         | 节点:1 ANCTL AS700N Servo Dri 🔻               |           |  |
|              |                 | 5. Target velocity                                                                                                                                                                                                           | <未分配> ▼                                     |           |  |
|              |                 | 7. Target torque                                                                                                                                                                                                             | <未分配> ▼                                     |           |  |
|              | $(\mathcal{P})$ |                                                                                                                                                                                                                              | <未分配> ▼                                     |           |  |
|              | 9 -             | 11. Modes of operation                                                                                                                                                                                                       | 节点:1 ANCTL AS700N Servo Dri ▼               |           |  |
|              |                 |                                                                                                                                                                                                                              | <未分配> ▼                                     | 《未分配》     |  |
|              |                 | 16. Negative torque limit value                                                                                                                                                                                              | <未分配> ▼                                     | × 767100> |  |
|              | the second      | 21. Touch probe function<br>44. Software Switch of Encoder's Inpu                                                                                                                                                            | 节点:1 ANCTL AS700N Servo Dri ▼<br>It <末分配> ▼ |           |  |
|              | <b>⊕ □</b>      | <ul> <li>44. Software Switch of Encoder's Inpl + 输入(设备到控制器)</li> </ul>                                                                                                                                                       | л < жола > 🗸 🗸                              | S #OURG?  |  |
|              |                 | * 和人(没育到生物和)<br>+ 数字输入                                                                                                                                                                                                       |                                             |           |  |
|              |                 |                                                                                                                                                                                                                              |                                             |           |  |
|              | 123 4           | AC功能模块函数和进程数据的组合被更改。<br>当更改组合时,请确认按预明方式运行。<br>E效组合可能会导致设备和机器的意外操作。                                                                                                                                                           |                                             |           |  |
|              |                 |                                                                                                                                                                                                                              |                                             |           |  |
|              |                 |                                                                                                                                                                                                                              |                                             |           |  |

Based on the selected PDO mapping object, assign output parameters (controller to device) and input parameters (device to controller).



- The object name, node number, index number must be correctly selected.
- Mapping objects selected in each step must be correctly assigned. Otherwise, an error will occur.

|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 🙀 轴基本设置                             |                               |                          |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------|--------------------------|
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 細田収育3   < 水分間>   マ                  | 2512                          |                          |
|         | Trunu I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ▼ 详细设置                              |                               |                          |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 恢复默认值                               |                               |                          |
|         | [HIH]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 功能名称                                | 设备                            | 过程数据                     |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 編出(控制器到设备)                        | <u>к</u> ш                    | LECENON                  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · 输入(设备到控制器)                        |                               |                          |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | * 22. Statusword                    | 节点:1 ANCTL AS700N Servo Dn マ  | 6041h-00.0(Inputs Stat V |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ★ 23. Position actual value         | 节点:1 ANCTL AS700N Servo Dn v  |                          |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24. Velocity actual value           | <未分配> ▼                       | <未分配>                    |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | <未分配> ▼                       | < 未分配>                   |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27. Modes of operation display      | 节点:1 ANCTL AS700N Servo Dri マ | 6061h-00.0(Inputs Mo T   |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40. Touch probe status              | 节点:1 ANCTL AS700N Servo Dri マ |                          |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 41. Touch probe pos1 pos value      | 节点:1 ANCTL AS700N Servo Dri ▼ | 60BAh-00.0(Inputs_Toc v  |
|         | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     | <未分配> ▼                       | < 未分面>                   |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | <未分配> ▼                       | <未分館>                    |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45. Status of Encoder's Input Slave | <未分配> ▼                       |                          |
|         | the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 46. Reference Position for csp      | <未分配> 🔻                       | <未分配> 工                  |
| napping | the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - <del>877#</del> A                 |                               |                          |
| lapping | - the second sec | 28. Positive limit switch           | 市点:1 ANCTL AS700N Servo Dri ▼ |                          |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 29. Negative limit switch           | 节点:1 ANCTL AS700N Servo Dri マ |                          |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | <未分配> ▼                       |                          |
|         | 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 32. Encoder Phase Z Detection       | <未分配> ▼                       | <未分館>                    |
|         | 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33. Home switch                     | 节点:1 ANCTL AS700N Servo Dri 🔻 |                          |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 37. External Latch Input 1          | <未分配> ▼                       |                          |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38. External Latch Input 2          | <未分配>                         | <未分館>                    |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MC功能模块函数和进程数据的组合被更改。                |                               |                          |

60FD must be mapped by bit to be consistent with that of Omron, as shown in the figure.

# NOTICE

• Bits 0 to 2 of JSS715N respectively indicate the NL, PL, and home. Bits 16 to 20 indicate the statuses of DI1 to DI5.

Unit conversion settings:



Set [Display Unit] according to the actual running unit of the load.

Set 60 mm per revolution. (During commissioning, 1 mm/s equals to the motor speed of 1 RPM.)

#### Operation setting:



#### NOTICE

- Set the maximum speed of the load as needed (if the equivalent motor speed exceeds 6000 RPM, the host controller software will prompt the incorrect parameter settings in red boxes).
- Acceleration/Deceleration of 0 means that the running curve is planned with the maximum acceleration/deceleration (if the customer has no special requirements, it does not need to be set).
- Torque: A warning value of 0 means no warning (if the customer has no special requirements, it does not need to be set).
- Monitoring: The positioning range and zero position range must be set according to the actual motor and mechanical conditions. If the values are too small, positioning or homing will never be completed.

0.0

Limit setting:

| Sonware II                          | mit setting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                     | MIT Setting<br>MCAustor (1) × ・<br>アレンシンゴ<br>取付ける第<br>本はの時代の「ある」<br>本はの時代の「ある」<br>本はの時代の「ある」<br>本はの時代の「ある」<br>本はの時代の「ある」<br>本はの時代の「ある」<br>本はの時代の「ある」<br>本はの時代の「この」<br>本はの時代の「この」<br>本はの時代の「この」<br>本はの時代の「この」<br>本はの時代の「この」<br>本はの時代の「この」<br>本はの時代の「この」<br>本はの時代の「この」<br>本はの時代の「この」<br>本はの時代の「この」<br>本はの時代の「この」<br>本はの時代の「この」<br>本はの時代の「この」<br>本はの時代の「この」<br>本はの時代の「この」<br>本はの時代の「この」<br>本はの時代の「この」<br>本はの時代の「この」<br>本はの時代の「この」<br>本はの時代の「この」<br>本はの時代の「この」<br>本はの時代の「この」<br>本はの時代の「この」<br>本はの時代の「この」<br>本はの時代の「この」<br>本はの時代の「この」<br>本はの時代の「この」<br>本はの時代の「この」<br>本はの時代の「この」<br>本はの時代の「この」<br>本はの時代の「この」<br>本はの時代の「この」<br>本はの時代の「この」<br>本はの時代の「この」<br>本はの時代の「この」<br>本はの時代の「この」<br>本はの時代の「この」<br>本はの時代の「この」<br>本はの時代の「この」<br>本はの時代の「この」<br>本はの時代の「この」<br>本はの時代の「この」<br>本はの時代の「この」<br>本はの時代の「この」<br>本はの日本の」<br>本はの」<br>「」の」<br>本はの」<br>「」の」<br>「」の」<br>本はの」<br>「」の」<br>「」の」<br>「」の」<br>「」の」<br>「」の」<br>「」の」<br>「」の」<br>「」の」<br>「」の」<br>「」の」<br>「」の」<br>「」の」<br>「」の」<br>「」の」<br>「」の」<br>「」の」<br>「」の」<br>「」の」<br>「」の」<br>「」の」<br>「」の」<br>「」の」<br>「」の」<br>「」の」<br>「」の」<br>「」の」<br>「」の」<br>「」の」<br>「」の<br>「」の |
| Click the [Limit Setting] icon. — 🕢 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

### NOTICE

• If the software position limit function is used, after the host controller is used for homing, the function takes effect.

#### Homing setting:

Click the

| Dereet a               | monning mound at | , eor anig to                |                             |   |
|------------------------|------------------|------------------------------|-----------------------------|---|
| port cor               | nfiguration.     |                              |                             |   |
|                        |                  |                              |                             |   |
|                        | EtherCAT         | (MC1) 🗙 🚭 Section0 - Program | 10                          | - |
|                        | 🏋 🛆 井 原点返        |                              |                             |   |
|                        | 原点输入信            |                              | 11月公論入約操作选项 医感觉回答注 下        |   |
|                        | 原出输入检测方          | A ILTA V                     | <b>负限位输入时操作选项</b> 医特尔亚即停止 🔽 |   |
|                        | <b>I</b>         | 原点接近信号                       |                             |   |
|                        |                  | Z相縮入<br>正限位輸入                |                             |   |
|                        | Ø                |                              |                             |   |
| [Homing Setting] icon. | - <b>-</b>       |                              |                             |   |
|                        | 123              |                              |                             |   |
|                        | Ō                |                              |                             |   |
|                        |                  |                              |                             |   |

Select a homing method according to

- If the home switch or limit switch is not configured, select "Zero Position Preset".
- To use other methods for the servo to match the host controller function, refer to the following table for settings.

| NX Software Description | Servo Function                      | Terminal Configuration |
|-------------------------|-------------------------------------|------------------------|
| Home proximity signal   | Home switch (FunIN.5)               | DI3                    |
| Phase Z signal input    | Phase Z signal of the motor encoder | NA                     |
| PL input                | P-OT (FunIN.6)                      | DI1                    |
| NL input                | N-OT (FunIN.7)                      | DI2                    |

| Set the homing speed, —— | ● ▼速度/加速度/减速度<br>原点返回速度 | 100 毫米/s             | 原点返回接沂速度 | 10 毫米/s   |
|--------------------------|-------------------------|----------------------|----------|-----------|
| acceleration rate,       | 原点返回加速度                 | 0 空米/s^2<br>0 学米/s^3 | 原点返回减速度  | 0 空米/s^2  |
| and home offset.         | ▼其它                     |                      |          |           |
|                          | 原点输入掩码距离                | 米堂 00001             | 原点偏移量    | 0 端米      |
|                          | 原点返回持续时间<br>原点返回补偿值     | 100 ms<br>定米         | 原点返回补偿速度 | 1000 毫米/s |

# NOTICE

Select a homing method for the host controller according to the actual mechanical conditions, and • set the homing speed, acceleration rate, and home offset. If you select "Zero Position Preset", the parameters can be ignored.

#### **Homing Overview**

Function block: MC\_Home and MC\_HomeWithParameter

- MC\_Home parameters are set in the figure above.
- MC\_HomeWithParameter parameters are set in the function block.

MC\_Home and MC\_HomeWithParameter homing functions are the same, including 10 kinds of homing modes.

| MC_Home                                                                                                                                                               | MC_HomeWithParameter                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Approaching reverse running/home proximity                                                                                                                            | Specify the home reset action to be rewritten:                                                                                                                                                   |
| input OFF                                                                                                                                                             | 0: Nearby avoidance or near home input OFF                                                                                                                                                       |
| Approaching reverse running/home proximity ON                                                                                                                         | 1: Nearby avoidance or near home input ON                                                                                                                                                        |
| Home proximity input OFF                                                                                                                                              | 4: Near home input OFF                                                                                                                                                                           |
| Home proximity input ON                                                                                                                                               | 5: Near home input ON                                                                                                                                                                            |
| Limit input OFF                                                                                                                                                       | 8: Limit input OFF                                                                                                                                                                               |
| Approaching reverse running/home input mask                                                                                                                           | 9: Nearby avoidance or home input shield distance                                                                                                                                                |
| distance                                                                                                                                                              | 11: Only limit input                                                                                                                                                                             |
| Only limit input                                                                                                                                                      | 12: Nearby avoidance or contact time                                                                                                                                                             |
| Approaching reverse running/holding time                                                                                                                              | 13: No near home input, or contact home input                                                                                                                                                    |
| No home proximity input/holding home input                                                                                                                            | 14: Home preset                                                                                                                                                                                  |
| Zero position preset                                                                                                                                                  |                                                                                                                                                                                                  |
| Approaching reverse running/home input mask<br>distance<br>Only limit input<br>Approaching reverse running/holding time<br>No home proximity input/holding home input | <ul><li>9: Nearby avoidance or home input shield dista</li><li>11: Only limit input</li><li>12: Nearby avoidance or contact time</li><li>13: No near home input, or contact home input</li></ul> |

- Home proximity input OFF: The servo drive starts to search for the home signal when encountering the falling edge of the home proximity switch.
- Home proximity input ON: The servo drive starts to search for the home signal when encountering the rising edge of the home proximity switch.
- Nearby avoidance/Approaching reverse running: When homing starts, the home proximity signal is ON, and the servo drive runs in the reverse direction after encountering the falling edge of the home proximity signal.
- Home input mask/shield distance: After the host controller receives the home signal (such as the edge change of the home proximity signal), it shields the home signal within a set distance, and then receives the home signal after the distance.
- Holding time/contact time: After the host controller receives the home signal (such as the edge change of the home proximity signal), it shields the home signal within the set time, and then receives the home signal after the time.
- Zero position preset/home preset: That is, the current position is regarded as the home, the motor does not work, and the host controller writes the home offset into the position reference/ position feedback in the host controller.

#### DC setting:

The default clock is 2 ms. The steps to change the default setting are as follows:

- In offline state, change the synchronization clock (period of the main fixed-cycle task) in [Task Setting].
- After changing, power on again, and switch to the online state for the change to take effect.

| Click the [Limit Setting] icon. | ≥KERINDA . 0<br>nex.Controle() ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 音 ReserCAT | acturd - Program 🕨 🖉 🛱 🖉 👷 🙀                            |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------------------------|
| . 01                            | <ul> <li>※回 Struc.CAT</li> <li>※回 CPU/T業務課</li> <li>※回 CPU/T業務課</li> <li>※回 SamberRagg</li> <li>※回 SamberR</li></ul> |            | ① 5日の 中間 10日、日間10日、10日、10日、10日、10日、10日、10日、10日、10日、10日、 |

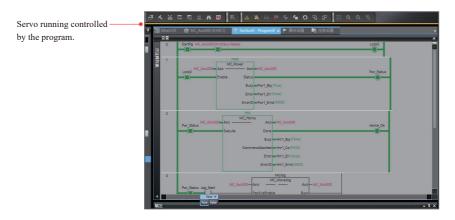
Changing the synchronization clock

#### 12.3.8 Servo running controlling

① After configuration, you can control the servo running by using the PLC program.

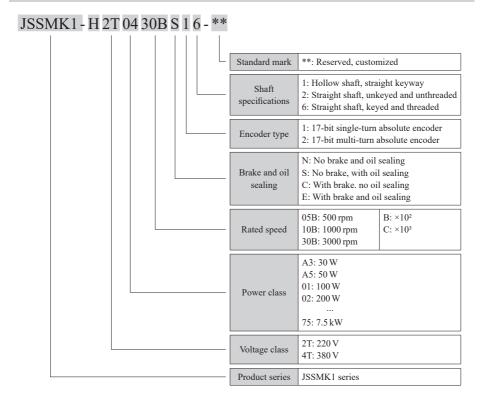
### NOTICE

 When using the "MC\_POWER" module, it is recommended to add the servo status bit "MC\_ Axis000.DrvStatus.Ready" of this axis for judgment (where MC\_Axis000 is the axis name). This prevents the final enabling failure due to PLC program running before communication configuration is completed.




② After the configuration and programming are complete, click the compile controller  $\mathbf{k}$ , switch the controller back to the online state, and click  $\mathbf{k}$  to download the program to the controller.

# NOTICE


• If the program has changed, click to use the synchronization function to compare the current program and the program in the controller, and then decide whether to download to the controller, or click to download from the controller. Making no change is also allowed.

The program after running is shown in the figure.



# Chapter 13 Motor and Options

#### **13.1 Model**



# 13.2 Nameplate

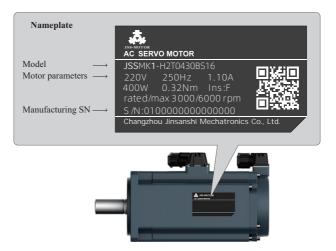



Figure 13-1 Nameplate of the JSSMK1servo motor

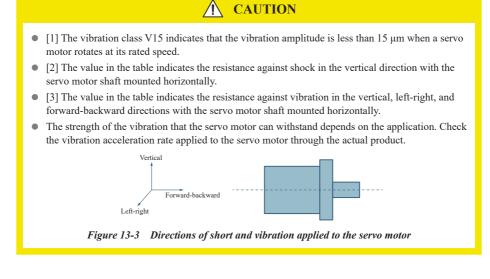
#### **13.3 Components**



Figure 13-2 Components of the JSSMK1servo motor

# **13.4 Terminal Definition**

# NOTICE


• The figure is for reference only. For details about the motor correspondence and size information, refer to the supporting relationships and drawings. Pay attention to the mirror relationship between the motor side and the cable side.

| Cable Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Terminal Layout (Cable Side) | Pin No. | Usage                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------|-------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              | 1       | Phase V                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              | 2       | Phase U                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              | 3       | Phase W                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              | 4       | Grounding cable               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              | А       | Brake (polarity insensi-tive) |
| Power input connector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              | В       | Brake (polarity insensi-tive) |
| +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              | А       | Phase U                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AC                           | В       | Phase V                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | B D                          | С       | Phase W                       |
| in and an anticenter of the second seco |                              | D       | Grounding cable               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              | А       | Phase U                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              | В       | Phase V                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A D D D D C C C              | С       | Phase W                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | B Č                          | D       | Grounding cable               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              | 1       | Brake (polarity insensi-tive) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              | 2       | Brake (polarity insensi-tive) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              | 1       | DATA+                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              | 2       | DATA-                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              | 3       | BAT+                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              | 4       | BAT-                          |
| Encoder connector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              | 5       | +5V                           |
| <b>↓</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              | 6       | 0V                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              | 7       | Enclosure                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              | 1       | DATA+                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              | 2       | DATA-                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              | 4       | +5V                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              | 5       | BAT-                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              | 6       | BAT+                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              | 9       | 0V                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              | 10      | Enclosure                     |

# 13.5 General Specifications

# 13.5.1 Mechanical Characteristics

|                                        | Item                                     | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|----------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Duty                                   |                                          | S1 (Continuous)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Vi                                     | bration class <sup>[1]</sup>             | V15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Insu                                   | lation resistance                        | 500 V DC, above 10 MΩ                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Ех                                     | citation mode                            | Permanent magnetic                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| М                                      | ounting mode                             | Flange                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Т                                      | Thermal class                            | Level F                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Ins                                    | ulation voltage                          | 1500 V AC, 1 minute (220 V level)<br>1800 V AC, 1 minute (380 V level)                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| IP ratio                               | ng of the enclosure                      | IP67 with an oil seal (oil seal installed on the axis side)                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Forward                                | direction of rotation                    | The servo drive rotates counterclockwise (CCW) as observed<br>from the axis side under the forward rotation command.                                                                                                                                                                                                                                                                                                                                                                |  |
|                                        | Ambient temperature                      | (Non-freezing) (Derate based on the derating curve for temperatures above 40°C.)                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                        | Ambient humidity                         | 20% to 80% (Non-condensing)                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Ambient<br>conditions                  | Installation site                        | <ul> <li>Free from corrosive or explosive gases</li> <li>Well ventilated with minimum amount of dust, waste, and moisture</li> <li>Convenient for inspection and cleaning</li> <li>Derating required only for altitudes above 1000 m</li> <li>Away from sources that may generate strong magnetic field</li> <li>Away from heating sources such as a heating stove</li> <li>Use a motor with oil seal in places with grinding fluid, oil mist, iron powders or cuttings.</li> </ul> |  |
|                                        | Storage environment                      | <ul> <li>Observe the following requirements for storage of a de-<br/>energized motor:</li> <li>Storage temperature: (Non-freezing)</li> <li>Storage humidity: (Non-condensing)</li> </ul>                                                                                                                                                                                                                                                                                           |  |
| Shock<br>resistance <sup>[2]</sup>     | Shock acceleration rate at flange        | 490 m/s <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| resistance                             | Number of shocks                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Vibration<br>resistance <sup>[3]</sup> | Vibration acceleration<br>rate at flange | 49 m/s²                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |



#### 13.5.2 Overload Characteristics

The motor is compliant with NEC and CEC requirements and equipped with protective functions against overload and over-temperature.

To protect different load motors, set the motor overload protection gain based on the overload capacity of the motor. Use the default gain in general conditions. However, when one of the following conditions occurs, change the gain based on actual motor temperature:

- The motor operates in environments with high temperature.
- The motor is in cyclic motion featuring a short motion cycle and frequent acceleration/deceleration.

See the following inverse time lag curve for motor overload protection.

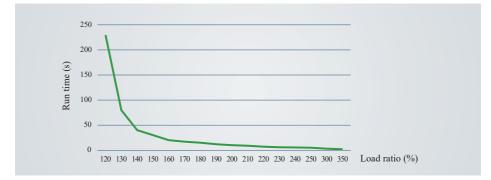
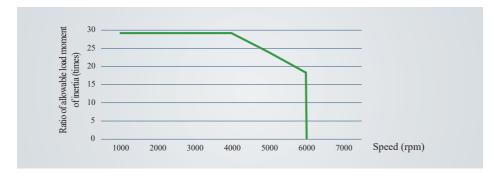



Figure 13-4 Motor overload protection curve

#### 13.5.3 Load moment of inertia

The load moment of inertia represents the inertia of the load. Larger load moment of inertia means slower response, which may result in unstable motion. The allowable load moment of inertia of the motor is subject to a limit. The limit varies with the driving conditions of the servo motor.


An overvoltage warning may occur during deceleration if the load moment of inertia exceeds the allowable value. The servo drive with a built-in braking resistor may generate an overload warning. In case of such warnings, take one of the following measures:

- Reduce the torque limit value.
- Reduce the deceleration rate.
- Reduce the maximum speed.
- Install an external braking resistor if the warning cannot be cleared using the above measures.

#### NOTICE

- Servo motors with the capacity below 400 W do not have built-in braking resistors.
- When a built-in braking resistor is used, some energy generated under certain regenerative driving conditions still exceeds the allowable capacity loss (W) of the built-in braking resistor. In this case, an external braking resistor is required.

The following figure shows the relationship between the ratio of allowable load moment of inertia and the speed when a servo is used without a built-in regenerative resistor or an external braking resistor. (The following figure shows the reference values upon deceleration at 200 VAC input and torques greater than the rated torque.)



#### Figure 13-5 Ratio of allowable load moment of inertia for the speed

When the servo unit is used by load whose moment of inertia exceeds the allowable value, an overvoltage alarm may be triggered.

### **13.6 Selection Precautions**

- Motors with oil seals must be derated by 10% during use.
- Do not share the power supply of the brake with other electrical devices. Failure to comply may result in malfunction of the brake due to voltage or current drop caused by other devices.
- Use cables with a cross-sectional area above 0.5 mm<sup>2</sup>.
- All parameters and torque-speed characteristic values are subject to the conditions that the motor works with a servo drive and the armature coil temperature is 20°C.
- The torque for fastening the terminal screws must be 0.19 N·m to 0.21 N·m. Excessive torque may damage the screws.
- Radial and axial loads of the motor

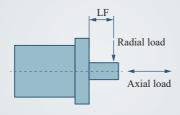
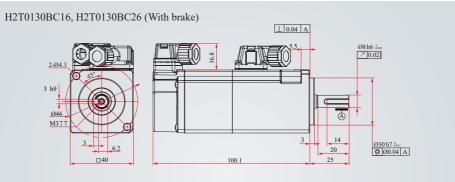
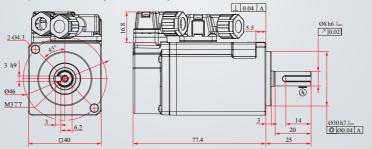



Figure 13-6 Radial and axial loads of the motor


# **13.7 Technical Specifications**

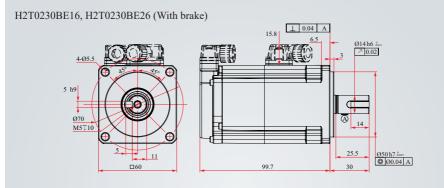
# 13.7.1 Model of 3000 rpm


#### 100 W (40 frame)

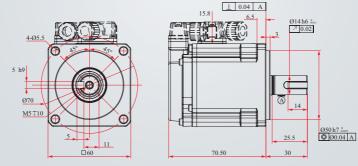
| Item<br>(JSSMK1-XXXXXXXXXX                           | H2T0130BC16, H2T0130BC26<br>(With brake) | H2T0130BN16, H2T0130BN26<br>(Without brake) |  |
|------------------------------------------------------|------------------------------------------|---------------------------------------------|--|
| Rated power (W)                                      | 1(                                       | 00                                          |  |
| Rated current (A)                                    | 1                                        | .1                                          |  |
| Maximum current (A)                                  | 3                                        | .9                                          |  |
| Rated torque (N·m)                                   | 0.32                                     |                                             |  |
| Maximum torque (N·m)                                 | 1.12                                     |                                             |  |
| Rotor inertia (10 <sup>-4</sup> ·kg·m <sup>2</sup> ) | 0.033 0.03                               |                                             |  |
| Rated speed (rpm)                                    | 3000                                     |                                             |  |
| Maximum speed (rpm)                                  | 6000                                     |                                             |  |
| Rated voltage (V)                                    | 220                                      |                                             |  |

#### Product Dimensions (unit: mm)




#### H2T0130BN16, H2T0130BN26 (Without brake)

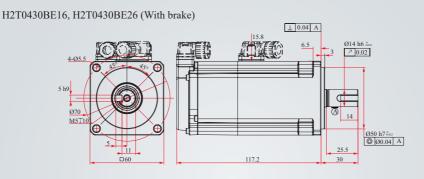



| Item<br>(JSSMK1-XXXXXXXXXX)                          | H2T0230BE16, H2T0230BE26<br>(With brake) | H2T0230BS16, H2T0230BS26<br>(Without brake) |  |
|------------------------------------------------------|------------------------------------------|---------------------------------------------|--|
| Rated power (W)                                      | 200                                      |                                             |  |
| Rated current (A)                                    | 1.                                       | 29                                          |  |
| Maximum current (A)                                  | 4.                                       | 41                                          |  |
| Rated torque (N·m)                                   | 0.64                                     |                                             |  |
| Maximum torque (N·m)                                 | 2.23                                     |                                             |  |
| Rotor inertia (10 <sup>-4</sup> ·kg·m <sup>2</sup> ) | 0.35 0.34                                |                                             |  |
| Overload multiplier                                  | 3.5                                      |                                             |  |
| Rated speed (rpm)                                    | 3000                                     |                                             |  |
| Maximum speed (rpm)                                  | 6000                                     |                                             |  |
| Rated voltage (V)                                    | 220                                      |                                             |  |

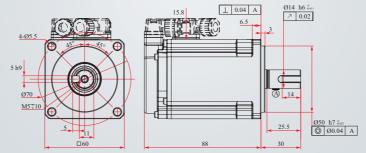
#### 200 W (60 frame)

### Product Dimensions (unit: mm)




#### H2T0230BS16, H2T0230BS26 (Without brake)

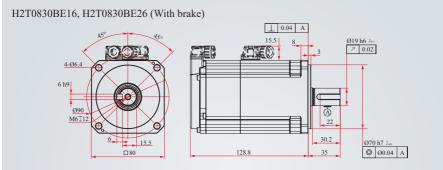



#### 400 W (60 frame)

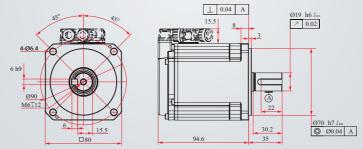
| Item<br>(JSSMK1-XXXXXXXXXX)                          | H2T0430BE16, H2T0430BE26<br>(With brake) | H2T0430BS16, H2T0430BS26<br>(Without brake) |  |
|------------------------------------------------------|------------------------------------------|---------------------------------------------|--|
| Rated power (W)                                      | 400                                      |                                             |  |
| Rated current (A)                                    | 2.                                       | 51                                          |  |
| Maximum current (A)                                  | 8.                                       | 78                                          |  |
| Rated torque (N·m)                                   | 1.27                                     |                                             |  |
| Maximum torque (N·m)                                 | 4.45                                     |                                             |  |
| Rotor inertia (10 <sup>-4</sup> ·kg·m <sup>2</sup> ) | 0.60 0.59                                |                                             |  |
| Overload multiplier                                  | 3.5                                      |                                             |  |
| Rated speed (rpm)                                    | 3000                                     |                                             |  |
| Maximum speed (rpm)                                  | 6000                                     |                                             |  |
| Rated voltage (V)                                    | 220                                      |                                             |  |

#### Product Dimensions (unit: mm)




#### H2T0430BS16, H2T0430BS26 (Without brake)

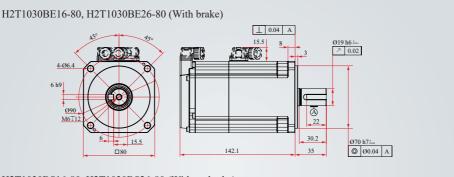



| 750 | W | (80 | frame | り |
|-----|---|-----|-------|---|
|-----|---|-----|-------|---|

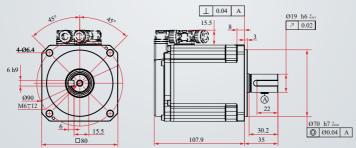
| Item<br>(JSSMK1-XXXXXXXXXX)                          | H2T0830BE16, H2T0830BE26<br>(With brake) | H2T0830BS16, H2T0830BS26<br>(Without brake) |  |
|------------------------------------------------------|------------------------------------------|---------------------------------------------|--|
| Rated power (W)                                      | 750                                      |                                             |  |
| Rated current (A)                                    | 4.                                       | 60                                          |  |
| Maximum current (A)                                  | 16                                       | .30                                         |  |
| Rated torque (N·m)                                   | 2.39                                     |                                             |  |
| Maximum torque (N·m)                                 | 8.36                                     |                                             |  |
| Rotor inertia (10 <sup>-4</sup> ·kg·m <sup>2</sup> ) | 1.77 1.72                                |                                             |  |
| Overload multiplier                                  | 3.5                                      |                                             |  |
| Rated speed (rpm)                                    | 3000                                     |                                             |  |
| Maximum speed (rpm)                                  | 6000                                     |                                             |  |
| Rated voltage (V)                                    | 220                                      |                                             |  |

#### Product Dimensions (unit: mm)




#### H2T0830BS16, H2T0830BS26 (Without brake)

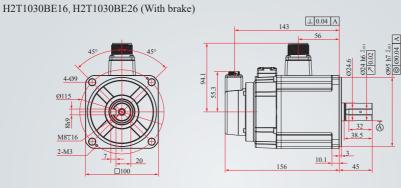



# 1 kW (80 frame)

| Item<br>(JSSMK1-XXXXXXXXX)                           | H2T1030BE16-80,<br>H2T1030BE26-80<br>(With brake) | H2T1030BS16-80,<br>H2T1030BS26-80<br>(Without brake) |  |
|------------------------------------------------------|---------------------------------------------------|------------------------------------------------------|--|
| Rated power (W)                                      | 100                                               | 0                                                    |  |
| Rated current (A)                                    | 6.3                                               |                                                      |  |
| Maximum current (A)                                  | 20.9                                              | 9                                                    |  |
| Rated torque (N·m)                                   | 3.18                                              |                                                      |  |
| Maximum torque (N·m)                                 | 11.13                                             |                                                      |  |
| Rotor inertia (10 <sup>-4</sup> ·kg·m <sup>2</sup> ) | 2.28 2.23                                         |                                                      |  |
| Overload multiplier                                  | 3.5                                               |                                                      |  |
| Rated speed (rpm)                                    | 3000                                              |                                                      |  |
| Maximum speed (rpm)                                  | 6000                                              |                                                      |  |
| Rated voltage (V)                                    | 220                                               |                                                      |  |

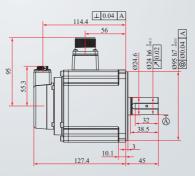
#### Product Dimensions (unit: mm)




### H2T1030BS16-80, H2T1030BS26-80 (Without brake)



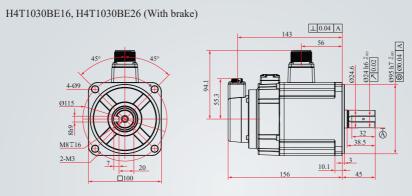
# 1 kW (100 frame, 220 V)


| Item<br>(JSSMK1-XXXXXXXXXX)                          | H2T1030BE16, H2T1030BE26<br>(With brake) | H2T1030BS16, H2T1030BS26<br>(Without brake) |  |
|------------------------------------------------------|------------------------------------------|---------------------------------------------|--|
| Rated power (W)                                      | 1000                                     |                                             |  |
| Rated current (A)                                    | 6.                                       | 23                                          |  |
| Maximum current (A)                                  | 18                                       | .69                                         |  |
| Rated torque (N·m)                                   | 3.18                                     |                                             |  |
| Maximum torque (N·m)                                 | 9.54                                     |                                             |  |
| Rotor inertia (10 <sup>-4</sup> ·kg·m <sup>2</sup> ) | 1.76 1.7                                 |                                             |  |
| Rated speed (rpm)                                    | 3000                                     |                                             |  |
| Maximum speed (rpm)                                  | 6000                                     |                                             |  |
| Rated voltage (V)                                    | 220                                      |                                             |  |

#### Product Dimensions (unit: mm)

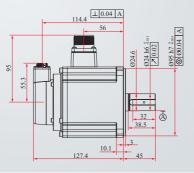


H2T1030BS16, H2T1030BS26 (Without brake)





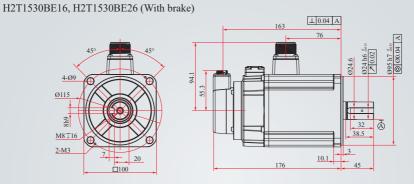

# 1 kW (100 frame, 380 V)


| Item<br>(JSSMK1-XXXXXXXXX)                           | H4T1030BE16, H4T1030BE26<br>(With brake) | H4T1030BS16, H4T1030BS26<br>(Without brake) |
|------------------------------------------------------|------------------------------------------|---------------------------------------------|
| Rated power (W)                                      | 1000                                     |                                             |
| Rated current (A)                                    | 3.61                                     |                                             |
| Maximum current (A)                                  | 10.83                                    |                                             |
| Rated torque (N·m)                                   | 3.18                                     |                                             |
| Maximum torque (N·m)                                 | 9.54                                     |                                             |
| Rotor inertia (10 <sup>-4</sup> ·kg·m <sup>2</sup> ) | 1.76 1.7                                 |                                             |
| Rated speed (rpm)                                    | 3000                                     |                                             |
| Maximum speed (rpm)                                  | 6000                                     |                                             |
| Rated voltage (V)                                    | 380                                      |                                             |

#### Product Dimensions (unit: mm)



H4T1030BS16, H4T1030BS26 (Without brake)






# 1.5 kW (100 frame, 220 V)

| Item<br>(JSSMK1-XXXXXXXXXX)                          | H2T1530BE16, H2T1530BE26<br>(With brake) | H2T1530BS16, H2T1530BS26<br>(Without brake) |
|------------------------------------------------------|------------------------------------------|---------------------------------------------|
| Rated power (W)                                      | 1500                                     |                                             |
| Rated current (A)                                    | 8.55                                     |                                             |
| Maximum current (A)                                  | 15.65                                    |                                             |
| Rated torque (N·m)                                   | 4.9                                      |                                             |
| Maximum torque (N·m)                                 | 14.7                                     |                                             |
| Rotor inertia (10 <sup>-4</sup> ·kg·m <sup>2</sup> ) | 2.58 2.51                                |                                             |
| Rated speed (rpm)                                    | 3000                                     |                                             |
| Maximum speed (rpm)                                  | 5000                                     |                                             |
| Rated voltage (V)                                    | 220                                      |                                             |

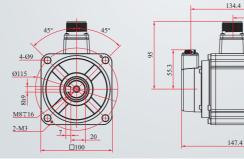
#### Product Dimensions (unit: mm)



⊥ 0.04 A

095 h7 las

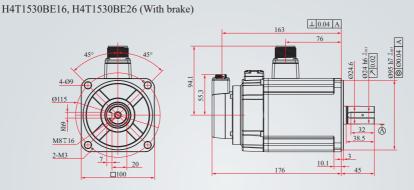
024.6 024 h6 <sup>3</sup> 70.02


10.1

45

32 A

76


#### H2T1530BS16, H2T1530BS26 (Without brake)



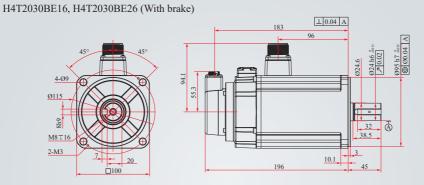
# 1.5 kW (100 frame, 380 V)

| Item<br>(JSSMK1-XXXXXXXXXX)                          | H4T1530BE16, H4T1530BE26<br>(With brake) | H4T1530BS16, H4T1530BS26<br>(Without brake) |
|------------------------------------------------------|------------------------------------------|---------------------------------------------|
| Rated power (W)                                      | 1500                                     |                                             |
| Rated current (A)                                    | 4.95                                     |                                             |
| Maximum current (A)                                  | 14.85                                    |                                             |
| Rated torque (N·m)                                   | 4.9                                      |                                             |
| Maximum torque (N·m)                                 | 14.7                                     |                                             |
| Rotor inertia (10 <sup>-4</sup> ·kg·m <sup>2</sup> ) | 2.58                                     | 2.51                                        |
| Rated speed (rpm)                                    | 3000                                     |                                             |
| Maximum speed (rpm)                                  | 5000                                     |                                             |
| Rated voltage (V)                                    | 380                                      |                                             |

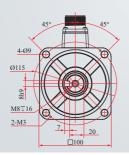
#### Product Dimensions (unit: mm)

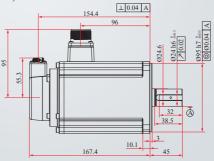


H4T1530BS16, H4T1530BS26 (Without brake)





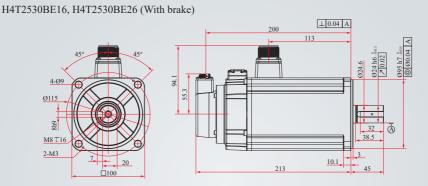


# 2 kW (100 frame)


| Item<br>(JSSMK1-XXXXXXXXX)                           | H4T2030BE16, H4T2030BE26<br>(With brake) | H4T2030BS16, H4T2030BS26<br>(Without brake) |
|------------------------------------------------------|------------------------------------------|---------------------------------------------|
| Rated power (W)                                      | 2000                                     |                                             |
| Rated current (A)                                    | 6.38                                     |                                             |
| Maximum current (A)                                  | 19.14                                    |                                             |
| Rated torque (N·m)                                   | 6.37                                     |                                             |
| Maximum torque (N·m)                                 | 19.1                                     |                                             |
| Rotor inertia (10 <sup>-4</sup> ·kg·m <sup>2</sup> ) | 3.39 3.33                                |                                             |
| Rated speed (rpm)                                    | 3000                                     |                                             |
| Maximum speed (rpm)                                  | 5000                                     |                                             |
| Rated voltage (V)                                    | 380                                      |                                             |

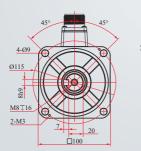
#### Product Dimensions (unit: mm)

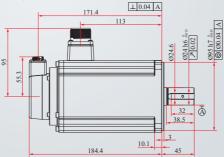


H4T2030BS16, H4T2030BS26 (Without brake)







# 2.5 kW (100 frame)


| Item<br>(JSSMK1-XXXXXXXXX)                           | H4T2530BE16, H4T2530BE26<br>(With brake) | H4T2530BS16, H4T2530BS26<br>(Without brake) |
|------------------------------------------------------|------------------------------------------|---------------------------------------------|
| Rated power (W)                                      | 2500                                     |                                             |
| Rated current (A)                                    | 8.01                                     |                                             |
| Maximum current (A)                                  | 24.03                                    |                                             |
| Rated torque (N·m)                                   | 7.96                                     |                                             |
| Maximum torque (N·m)                                 | 23.9                                     |                                             |
| Rotor inertia (10 <sup>-4</sup> ·kg·m <sup>2</sup> ) | 4.03 3.97                                |                                             |
| Rated speed (rpm)                                    | 3000                                     |                                             |
| Maximum speed (rpm)                                  | 5000                                     |                                             |
| Rated voltage (V)                                    | 380                                      |                                             |

#### Product Dimensions (unit: mm)

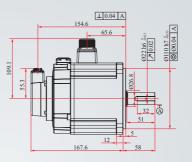


H4T2530BS16, H4T2530BS26 (Without brake)



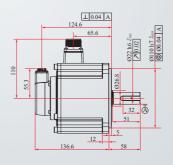


# 13.7.2 Model of 1500 rpm


# 850 W (130 frame, 220 V)

| Item<br>(JSSMK1-XXXXXXXXXX)                          | H2T0915BE16, H2T0915BE26<br>(With brake) | H2T0915BS16, H2T0915BS26<br>(Without brake) |
|------------------------------------------------------|------------------------------------------|---------------------------------------------|
| Rated power (W)                                      | 850                                      |                                             |
| Rated current (A)                                    | 5.72                                     |                                             |
| Maximum current (A)                                  | 13.89                                    |                                             |
| Rated torque (N·m)                                   | 5.39                                     |                                             |
| Maximum torque (N·m)                                 | 13.5                                     |                                             |
| Rotor inertia (10 <sup>-4</sup> ·kg·m <sup>2</sup> ) | 14.56 13.62                              |                                             |
| Rated speed (rpm)                                    | 1500                                     |                                             |
| Maximum speed (rpm)                                  | 3000                                     |                                             |
| Rated voltage (V)                                    | 220                                      |                                             |

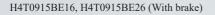
# Product Dimensions (unit: mm)

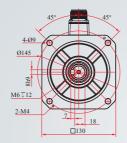

H2T0915BE16, H2T0915BE26 (With brake)

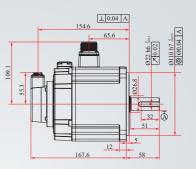




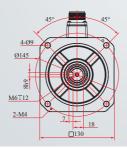
H2T0915BS16, H2T0915BS26 (Without brake)

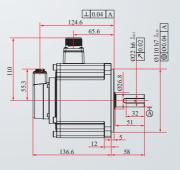




# 850 W (130 frame, 380 V)

| Item<br>(JSSMK1-XXXXXXXXXX)                          | H4T0915BE16, H4T0915BE26<br>(With brake) | H4T0915BS16, H4T0915BS26<br>(Without brake) |
|------------------------------------------------------|------------------------------------------|---------------------------------------------|
| Rated power (W)                                      | 850                                      |                                             |
| Rated current (A)                                    | 3.16                                     |                                             |
| Maximum current (A)                                  | 7.99                                     |                                             |
| Rated torque (N·m)                                   | 5.39                                     |                                             |
| Maximum torque (N·m)                                 | 13.5                                     |                                             |
| Rotor inertia (10 <sup>-4</sup> ·kg·m <sup>2</sup> ) | 14.56 13.62                              |                                             |
| Rated speed (rpm)                                    | 1500                                     |                                             |
| Maximum speed (rpm)                                  | 3000                                     |                                             |
| Rated voltage (V)                                    | 380                                      |                                             |

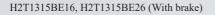

#### Product Dimensions (unit: mm)

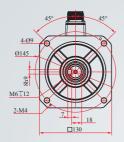


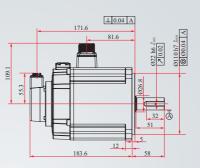




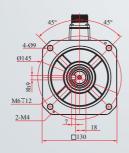

H4T0915BS16, H4T0915BS26 (Without brake)

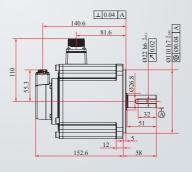




# 1.3 kW (130 frame, 220 V)

| Item<br>(JSSMK1-XXXXXXXXXX)                          | H2T1315BE16, H2T1315BE26<br>(With brake) | H2T1315BS16, H2T1315BS26<br>(Without brake) |
|------------------------------------------------------|------------------------------------------|---------------------------------------------|
| Rated power (W)                                      | 1300                                     |                                             |
| Rated current (A)                                    | 8.61                                     |                                             |
| Maximum current (A)                                  | 21.1                                     |                                             |
| Rated torque (N·m)                                   | 8.34                                     |                                             |
| Maximum torque (N·m)                                 | 20.85                                    |                                             |
| Rotor inertia (10 <sup>-4</sup> ·kg·m <sup>2</sup> ) | 20.54 19.6                               |                                             |
| Rated speed (rpm)                                    | 1500                                     |                                             |
| Maximum speed (rpm)                                  | 3000                                     |                                             |
| Rated voltage (V)                                    | 220                                      |                                             |


#### Product Dimensions (unit: mm)

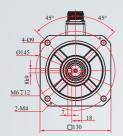


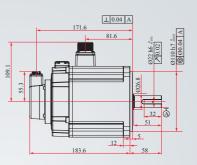





H2T1315BS16, H2T1315BS26 (Without brake)

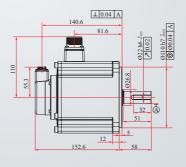






# 1.3 kW (130 frame, 380 V)

| Item<br>(JSSMK1-XXXXXXXXXX)                          | H4T1315BE16, H4T1315BE26<br>(With brake) | H4T1315BS16, H4T1315BS26<br>(Without brake) |
|------------------------------------------------------|------------------------------------------|---------------------------------------------|
| Rated power (W)                                      | 1300                                     |                                             |
| Rated current (A)                                    | 4.97                                     |                                             |
| Maximum current (A)                                  | 12.05                                    |                                             |
| Rated torque (N·m)                                   | 8.34                                     |                                             |
| Maximum torque (N·m)                                 | 20.85                                    |                                             |
| Rotor inertia (10 <sup>-4</sup> ·kg·m <sup>2</sup> ) | 20.54 19.6                               |                                             |
| Rated speed (rpm)                                    | 1500                                     |                                             |
| Maximum speed (rpm)                                  | 3000                                     |                                             |
| Rated voltage (V)                                    | 380                                      |                                             |

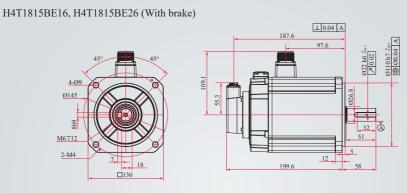
#### Product Dimensions (unit: mm)


#### H4T1315BE16, H4T1315BE26 (With brake)

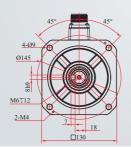


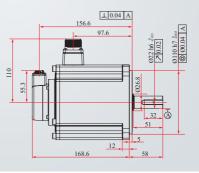


#### H4T1315BS16, H4T1315BS26 (Without brake)





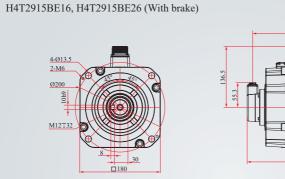


### 1.8 kW (130 frame)

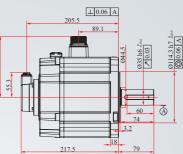

| Item<br>(JSSMK1-XXXXXXXXXX)                          | H4T1815BE16, H4T1815BE26 H4T1815BS16, H4T1<br>(With brake) (Without brake) |     |  |  |  |  |
|------------------------------------------------------|----------------------------------------------------------------------------|-----|--|--|--|--|
| Rated power (W)                                      | 18                                                                         | 00  |  |  |  |  |
| Rated current (A)                                    | 7.03                                                                       |     |  |  |  |  |
| Maximum current (A)                                  | 17.01                                                                      |     |  |  |  |  |
| Rated torque (N·m)                                   | 11.5                                                                       |     |  |  |  |  |
| Maximum torque (N·m)                                 | 28                                                                         | .75 |  |  |  |  |
| Rotor inertia (10 <sup>-4</sup> ·kg·m <sup>2</sup> ) | 25.72 24.78                                                                |     |  |  |  |  |
| Rated speed (rpm)                                    | 15                                                                         | 00  |  |  |  |  |
| Maximum speed (rpm)                                  | 3000                                                                       |     |  |  |  |  |
| Rated voltage (V)                                    | 380                                                                        |     |  |  |  |  |

### Product Dimensions (unit: mm)



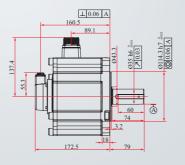
### H4T1815BS16, H4T1815BS26 (Without brake)




### 2.9 kW (180 frame)

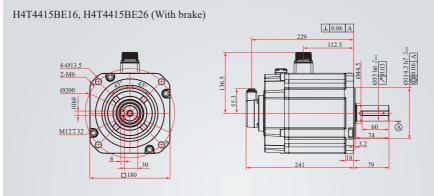

| Item<br>(JSSMK1-XXXXXXXXXX)                          | H4T2915BE16, H4T2915BE26<br>(With brake) H4T2915BS16, H4T2<br>(Without brake) |     |  |  |  |
|------------------------------------------------------|-------------------------------------------------------------------------------|-----|--|--|--|
| Rated power (W)                                      | 2900                                                                          |     |  |  |  |
| Rated current (A)                                    | 10                                                                            | .26 |  |  |  |
| Maximum current (A)                                  | 25                                                                            | .81 |  |  |  |
| Rated torque (N·m)                                   | 18.5                                                                          |     |  |  |  |
| Maximum torque (N·m)                                 | 46                                                                            | 5.5 |  |  |  |
| Rotor inertia (10 <sup>-4</sup> ·kg·m <sup>2</sup> ) | 46.19 43.04                                                                   |     |  |  |  |
| Rated speed (rpm)                                    | 15                                                                            | 00  |  |  |  |
| Maximum speed (rpm)                                  | 3000                                                                          |     |  |  |  |
| Rated voltage (V)                                    | 380                                                                           |     |  |  |  |


### Product Dimensions (unit: mm)



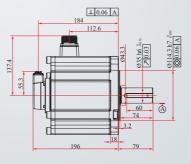


H4T2915BS16, H4T2915BS26 (Without brake)





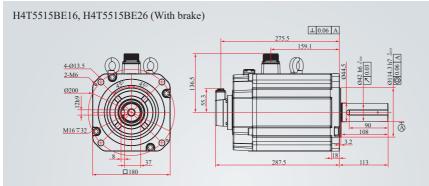

### 4.4 kW (180 frame)


| Item<br>(JSSMK1-XXXXXXXXXX)                          | H4T4415BE16, H4T4415BE26<br>(With brake) H4T4415BS16, H4T4<br>(Without brake) |     |  |  |  |
|------------------------------------------------------|-------------------------------------------------------------------------------|-----|--|--|--|
| Rated power (W)                                      | 4400                                                                          |     |  |  |  |
| Rated current (A)                                    | 15                                                                            | 5.6 |  |  |  |
| Maximum current (A)                                  | 37                                                                            | 7.8 |  |  |  |
| Rated torque (N·m)                                   | 28.4                                                                          |     |  |  |  |
| Maximum torque (N·m)                                 | 71                                                                            | .1  |  |  |  |
| Rotor inertia (10 <sup>-4</sup> ·kg·m <sup>2</sup> ) | 72.97 67.22                                                                   |     |  |  |  |
| Rated speed (rpm)                                    | 15                                                                            | 00  |  |  |  |
| Maximum speed (rpm)                                  | 3000                                                                          |     |  |  |  |
| Rated voltage (V)                                    | 380                                                                           |     |  |  |  |

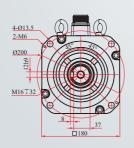
### Product Dimensions (unit: mm)

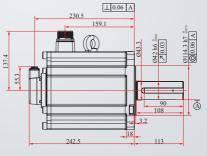


### H4T4415BS16, H4T4415BS26 (Without brake)





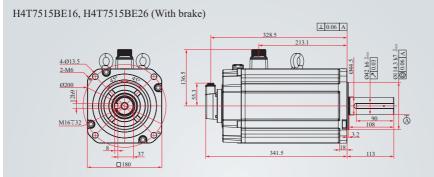


### 5.5 kW (180 frame)


| Item<br>(JSSMK1-XXXXXXXXXX)                          | H4T5515BE16, H4T5515BE26 H4T5515BS16, H4T5<br>(With brake) (Without brak |     |  |  |  |
|------------------------------------------------------|--------------------------------------------------------------------------|-----|--|--|--|
| Rated power (W)                                      | 55                                                                       | 00  |  |  |  |
| Rated current (A)                                    | 19                                                                       | .77 |  |  |  |
| Maximum current (A)                                  | 49                                                                       | .43 |  |  |  |
| Rated torque (N·m)                                   | 35                                                                       |     |  |  |  |
| Maximum torque (N·m)                                 | 87                                                                       | 7.6 |  |  |  |
| Rotor inertia (10 <sup>-4</sup> ·kg·m <sup>2</sup> ) | 111.58 110.53                                                            |     |  |  |  |
| Rated speed (rpm)                                    | 1500                                                                     |     |  |  |  |
| Maximum speed (rpm)                                  | 3000                                                                     |     |  |  |  |
| Rated voltage (V)                                    | 380                                                                      |     |  |  |  |

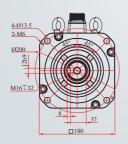
### Product Dimensions (unit: mm)

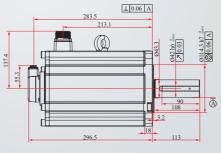


### H4T5515BS16, H4T5515BS26 (Without brake)



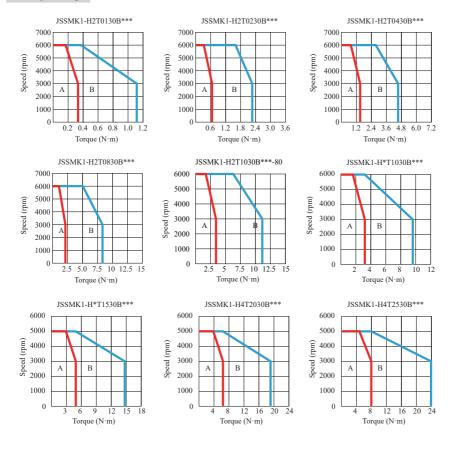




### 7.5 kW (180 frame)


| Item<br>(JSSMK1-XXXXXXXXXX)                          | H4T7515BE16, H4T7515BE26 H4T7515BS16, H4T7<br>(With brake) (Without brake) |     |  |  |  |  |
|------------------------------------------------------|----------------------------------------------------------------------------|-----|--|--|--|--|
| Rated power (W)                                      | 75                                                                         | 00  |  |  |  |  |
| Rated current (A)                                    | 26.55                                                                      |     |  |  |  |  |
| Maximum current (A)                                  | 66                                                                         | .38 |  |  |  |  |
| Rated torque (N·m)                                   | 48                                                                         |     |  |  |  |  |
| Maximum torque (N·m)                                 | 1                                                                          | 19  |  |  |  |  |
| Rotor inertia (10 <sup>-4</sup> ·kg·m <sup>2</sup> ) | 161.51 160.45                                                              |     |  |  |  |  |
| Rated speed (rpm)                                    | 15                                                                         | 00  |  |  |  |  |
| Maximum speed (rpm)                                  | 3000                                                                       |     |  |  |  |  |
| Rated voltage (V)                                    | 380                                                                        |     |  |  |  |  |

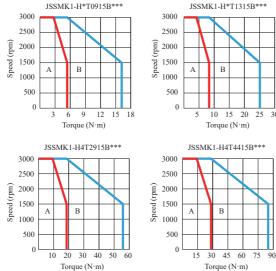
### Product Dimensions (unit: mm)

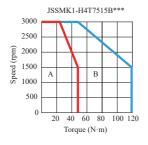


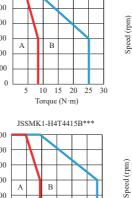

### H4T7515BS16, H4T7515BS26 (Without brake)

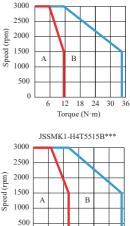





### 13.8 Motor torque-speed characteristics


### Model of 3000 rpm





A Continuous work area B Short-time work area

### Model of 1500 rpm









0

15 30 45 60 75 90

JSSMK1-H4T1815B\*\*\*

Continuous work area Α Short-time work area в

Torque (N·m)

# 13.9 Supporting relationship between the drive and motor

| 220 | V |
|-----|---|
|     |   |

|                        | SIZ                                                                                                           | SIZE B                                                   |                                                          |  |  |  |
|------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|--|--|--|
| Drive model            | Single-phase 220V                                                                                             |                                                          |                                                          |  |  |  |
| JSS715N-               | 2T1R6                                                                                                         | 2T2R8                                                    | 2T5R5                                                    |  |  |  |
|                        | 100W                                                                                                          | 400W                                                     | 750W                                                     |  |  |  |
| Motor model<br>JSSMK1- | H2T0130BN16<br>H2T0130BN26<br>H2T0130BC16<br>H2T0130BC26<br>200W<br>H2T0230BS16<br>H2T0230BS26<br>H2T0230BE16 | H2T0430BS16<br>H2T0430BS26<br>H2T0430BE16<br>H2T0430BE26 | H2T0830BS16<br>H2T0830BS26<br>H2T0830BE16<br>H2T0830BE26 |  |  |  |

|             | SIZ            | SIZE D                        |             |  |  |
|-------------|----------------|-------------------------------|-------------|--|--|
| Drive model |                | Single-phase/three-phase 220V |             |  |  |
| JSS715N-    | 2T7            | 'R6                           | 2T012       |  |  |
|             | 850            | )W                            | 1.3kW       |  |  |
|             | H2T091         | H2T0915BE16                   |             |  |  |
|             | H2T091         | H2T0915BE26                   |             |  |  |
|             | H2T091         | H2T0915BS16                   |             |  |  |
| Motor model | H2T091         | H2T0915BS26                   |             |  |  |
| JSSMK1-     | 1k             | 1kW                           |             |  |  |
|             | H2T1030BE16-80 | H2T1030BE16                   | H2T1530BE16 |  |  |
|             | H2T1030BE26-80 | H2T1030BE26                   | H2T1530BE26 |  |  |
|             | H2T1030BS16-80 | H2T1030BS16                   | H2T1530BS16 |  |  |
|             | H2T1030BS26-80 | H2T1030BS26                   | H2T1530BS26 |  |  |

# 380 V

|             | SIZ              | E C         | SIZE D      |            |  |  |  |
|-------------|------------------|-------------|-------------|------------|--|--|--|
| Drive model | Three-phase 380V |             |             |            |  |  |  |
| JSS715N-    | 4T3R5            | 4T5R4       | 4T8R4       | 4T012      |  |  |  |
|             | 850W             | 1kW         | 1.8kW       | 2.9kW      |  |  |  |
|             | H4T0915BE16      | H4T1030BE16 | H4T1815BE16 | H4T2915BE1 |  |  |  |
|             | H4T0915BE26      | H4T1030BE26 | H4T1815BE26 | H4T2915BE2 |  |  |  |
|             | H4T0915BS16      | H4T1030BS16 | H4T1815BS16 | H4T2915BS1 |  |  |  |
|             | H4T0915BS26      | H4T1030BS26 | H4T1815BS26 | H4T2915BS2 |  |  |  |
|             |                  | 1.3kW       | 2kW         |            |  |  |  |
| Motor model |                  | H4T1315BE16 | H4T2030BE16 |            |  |  |  |
| JSSMK1-     |                  | H4T1315BE26 | H4T2030BE26 |            |  |  |  |
| 355MIX1-    |                  | H4T1315BS16 | H4T2030BS16 |            |  |  |  |
|             |                  | H4T1315BS26 | H4T2030BS26 |            |  |  |  |
|             |                  | 1.5kW       | 2.5kW       |            |  |  |  |
|             |                  | H4T1530BE16 | H4T2530BE16 |            |  |  |  |
|             |                  | H4T1530BE26 | H4T2530BE26 |            |  |  |  |
|             |                  | H4T1530BS16 | H4T2530BS16 |            |  |  |  |
|             |                  | H4T1530BS26 | H4T2530BS26 |            |  |  |  |

|                        | SIZE E      |                  |             |  |  |  |  |
|------------------------|-------------|------------------|-------------|--|--|--|--|
| Drive model            |             | Three-phase 380V |             |  |  |  |  |
| JSS715N-               | 4T017       | 4T021            | 4T026       |  |  |  |  |
| Motor model<br>JSSMK1- | 4.4kW       | 5.5kW            | 7.5kW       |  |  |  |  |
|                        | H4T4415BE16 | H4T5515BE16      | H4T7515BE16 |  |  |  |  |
|                        | H4T4415BE26 | H4T5515BE26      | H4T7515BE26 |  |  |  |  |
|                        | H4T4415BS16 | H4T5515BS16      | H4T7515BS16 |  |  |  |  |
|                        | H4T4415BS26 | H4T5515BS26      | H4T7515BS26 |  |  |  |  |

# 13.10 Supporting relationship between the motor and cable

### Model of 3000 rpm

| Motor<br>frame | Motor  | Motor Model |             | Absolute<br>oder | Brake   | Oil      | Shaft             | Matching Accessories of<br>Motor |      |
|----------------|--------|-------------|-------------|------------------|---------|----------|-------------------|----------------------------------|------|
| number         | Power  | JSSMK1-     | Single-turn | Multi-turn       | Sealing | Diameter | Power cable model | Encoder<br>cable model           |      |
|                |        | H2T0130BN16 | •           |                  |         |          |                   | 7                                | (13) |
| 40             | 100W   | H2T0130BN26 |             | •                |         |          | Ø8                | 7                                | (15) |
| 40             | (220V) | H2T0130BC16 | •           |                  | •       |          |                   | 1                                | (13) |
|                |        | H2T0130BC26 |             | •                | •       |          |                   | 1                                | (15) |
|                |        | H2T0230BS16 | •           |                  |         | •        |                   | 7                                | (13) |
|                | 200W   | H2T0230BS26 |             | •                |         | •        |                   | 7                                | (15) |
|                | (220V) | H2T0230BE16 | •           |                  | •       | •        |                   | 1                                | (13) |
| 60             |        | H2T0230BE26 |             | •                | •       | •        | Ø14               | 1                                | (15) |
| 60             |        | H2T0430BS16 | •           |                  |         | •        | 014               | 7                                | (13) |
|                | 400W   | H2T0430BS26 |             | •                |         | •        |                   | 7                                | (15) |
|                | (220V) | H2T0430BE16 | •           |                  | •       | •        |                   | 1                                | (13) |
|                |        | H2T0430BE26 |             | •                | •       | •        |                   | 1                                | (15) |
|                |        | H2T0830BS16 | •           |                  |         | •        |                   | 7                                | (13) |
| 80             | 750W   | H2T0830BS26 |             | •                |         | •        | Ø19               | 7                                | (15) |
| 80             | (220V) | H2T0830BE16 | •           |                  | •       | •        |                   | 1                                | (13) |
|                |        | H2T0830BE26 |             | •                | ٠       | •        |                   | 1                                | (15) |

| Motor<br>frame | Motor  | Motor Model    |             | Absolute<br>oder | Brake | Oil     |             | Matching Accessories of<br>Motor |                        |  |
|----------------|--------|----------------|-------------|------------------|-------|---------|-------------|----------------------------------|------------------------|--|
| number         | Power  | JSSMK1-        | Single-turn | Multi-turn       | Diane | Sealing | Diameter    | Power cable<br>model             | Encoder<br>cable model |  |
|                |        | H2T1030BS16-80 | •           |                  |       | •       |             | $\overline{O}$                   | (13)                   |  |
|                | 1kW    | H2T1030BS26-80 |             | •                |       | •       | ~10         | 7                                | 15                     |  |
| 80             | (220V) | H2T1030BE16-80 | •           |                  | •     | •       | Ø19         | 1                                | (3)                    |  |
|                |        | H2T1030BE26-80 |             | •                | •     | •       |             | 1                                | (5)                    |  |
|                |        | H2T1030BS16    | •           |                  |       | •       |             | 8                                | (14)                   |  |
|                | 1kW    | H2T1030BS26    |             | •                |       | •       |             | 8                                | (6)                    |  |
|                | (220V) | H2T1030BE16    | •           |                  | •     | •       |             | 2                                | (14)                   |  |
|                |        | H2T1030BE26    |             | •                | •     | •       |             | 2                                | (6)                    |  |
|                |        | H4T1030BS16    | •           |                  |       | •       |             | 8                                | 14                     |  |
| 100            | 1kW    | H4T1030BS26    |             | •                |       | •       | <i>6</i> 24 | 8                                | 16                     |  |
| 100            | (380V) | H4T1030BE16    | •           |                  | •     | •       | Ø24         | 2                                | 14                     |  |
|                |        | H4T1030BE26    |             | •                | •     | •       |             | 2                                | 16                     |  |
|                |        | H2T1530BS16    | •           |                  |       | •       |             | 8                                | 14                     |  |
|                | 1.5kW  | H2T1530BS26    |             | •                |       | •       |             | 8                                | 16                     |  |
|                | (220V) | H2T1530BE16    | •           |                  | •     | •       |             | 2                                | 14                     |  |
|                |        | H2T1530BE26    |             | •                | •     | •       |             | 2                                | 16                     |  |

| Motor<br>frame | Motor  | Motor Model |             | Absolute<br>oder | Brake | Oil     | Shaft    | Matching A<br>Mo     | ccessories of<br>tor   |
|----------------|--------|-------------|-------------|------------------|-------|---------|----------|----------------------|------------------------|
| number         | Power  | JSSMK1-     | Single-turn | Multi-turn       | вгаке | Sealing | Diameter | Power cable<br>model | Encoder<br>cable model |
|                |        | H4T1530BS16 | •           |                  |       | •       |          | (8)                  | (14)                   |
|                | 1.5kW  | H4T1530BS26 |             | •                |       | •       |          | 8                    | 16                     |
|                | (380V) | H4T1530BE16 | •           |                  | •     | •       |          | 2                    | 14                     |
|                |        | H4T1530BE26 |             | •                | •     | •       |          | 2                    | 16                     |
|                |        | H4T2030BS16 | •           |                  |       | •       |          | 8                    | 14                     |
| 100            | 2kW    | H4T2030BS26 |             | •                |       | •       | Ø24      | 8                    | 16                     |
| 100            | (380V) | H4T2030BE16 | •           |                  | •     | •       | Ø24      | 2                    | (14)                   |
|                |        | H4T2030BE26 |             | •                | •     | •       |          | 2                    | 16                     |
|                |        | H4T2530BS16 | •           |                  |       | •       |          | 8                    | 14                     |
|                | 2.5kW  | H4T2530BS26 |             | •                |       | •       |          | 8                    | 16                     |
|                | (380V) | H4T2530BE16 | •           |                  | •     | •       |          | 2                    | 14                     |
|                |        | H4T2530BE26 |             | •                | •     | •       |          | 2                    | (16)                   |

# Model of 1500 rpm

| Motor<br>frame | Motor  |             |             | Absolute<br>oder | Brake | Oil     | Shaft    |                      | ccessories of<br>tor   |
|----------------|--------|-------------|-------------|------------------|-------|---------|----------|----------------------|------------------------|
| number         | Power  | JSSMK1-     | Single-turn | Multi-turn       | вгаке | Sealing | Diameter | Power cable<br>model | Encoder<br>cable model |
|                |        | H2T0915BS16 | •           |                  |       | •       |          | 8                    | (14)                   |
| 130            | 850W   | H2T0915BS26 |             | •                |       | •       | Ø22      | 8                    | (16)                   |
| 150            | (220V) | H2T0915BE16 | •           |                  | •     | •       | 022      | 2                    | (14)                   |
|                |        | H2T0915BE26 |             | •                | •     | •       |          | 2                    | (16)                   |
|                |        | H4T0915BS16 | •           |                  |       | •       |          | 8                    | (14)                   |
|                | 850W   | H4T0915BS26 |             | •                |       | •       |          | 8                    | (16)                   |
|                | (380V) | H4T0915BE16 | •           |                  | •     | •       | -        | 2                    | (14)                   |
|                |        | H4T0915BE26 |             | •                | •     | •       | -        | 2                    | (16)                   |
|                |        | H2T1315BS16 | •           |                  |       | •       |          | 8                    | (14)                   |
| 130            | 1.3kW  | H2T1315BS26 |             | •                |       | •       | Ø22      | 8                    | (16)                   |
| 150            | (220V) | H2T1315BE16 | •           |                  | •     | •       | 022      | 2                    | (14)                   |
|                |        | H2T1315BE26 |             | •                | •     | •       |          | 2                    | (16)                   |
|                |        | H4T1315BS16 | •           |                  |       | •       |          | 8                    | (14)                   |
|                | 1.3kW  | H4T1315BS26 |             | •                |       | •       |          | 8                    | (16)                   |
|                | (380V) | H4T1315BE16 | •           |                  | •     | •       |          | 2                    | (14)                   |
|                |        | H4T1315BE26 |             | •                | •     | •       |          | 2                    | (16)                   |

| Motor<br>frame | Motor           | Motor Model |             | Absolute<br>oder | Develop | Oil     | Shaft    |                      | ccessories of<br>tor   |
|----------------|-----------------|-------------|-------------|------------------|---------|---------|----------|----------------------|------------------------|
| number         | Power           | JSSMK1-     | Single-turn | Multi-turn       | Brake   | Sealing | Diameter | Power cable<br>model | Encoder<br>cable model |
|                |                 | H4T1815BS16 | •           |                  |         | •       |          | 8                    | (14)                   |
| 130            | 1.8kW           | H4T1815BS26 |             | •                |         | •       | Ø22      | 8                    | (16)                   |
| 150            | (380V)          | H4T1815BE16 | •           |                  | •       | •       | 022      | 2                    | (14)                   |
|                |                 | H4T1815BE26 |             | •                | •       | •       |          | 2                    | (16)                   |
|                |                 | H4T2915BS16 | •           |                  |         | •       |          | 1                    | (14)                   |
|                | 2.9kW           | H4T2915BS26 |             | •                |         | •       |          | 1                    | (16)                   |
|                | (380V)          | H4T2915BE16 | •           |                  | •       | •       |          | 5                    | (14)                   |
|                |                 | H4T2915BE26 |             | •                | •       | •       | Ø35      | (5)                  | (16)                   |
|                |                 | H4T4415BS16 | •           |                  |         | •       | 035      | (12)                 | (14)                   |
| 180            | 4.4kW           | H4T4415BS26 |             | •                |         | •       |          | (12)                 | (16)                   |
| 180            | (380V)          | H4T4415BE16 | •           |                  | •       | •       |          | 6                    | (14)                   |
|                |                 | H4T4415BE26 |             | •                | •       | •       |          | 6                    | (16)                   |
|                |                 | H4T5515BS16 | •           |                  |         | •       |          | (12)                 | (14)                   |
|                | 5.5kW<br>(380V) | H4T5515BS26 |             | •                |         | •       | Ø42      | (12)                 | (16)                   |
|                |                 | H4T5515BE16 | •           |                  | ٠       | •       | \$042    | 6                    | (14)                   |
|                |                 | H4T5515BE26 |             | •                | ٠       | •       |          | 6                    | 16                     |

| Motor           | Motor Motor Model Elicouci |             | Brake       | ke Oil     | Shaft   | Matching Accessories of<br>Motor |                      |                        |      |
|-----------------|----------------------------|-------------|-------------|------------|---------|----------------------------------|----------------------|------------------------|------|
| frame<br>number | Power                      | JSSMK1-     | Single-turn | Multi-turn | Sealing | Diameter                         | Power cable<br>model | Encoder<br>cable model |      |
|                 |                            | H4T7515BS16 | ٠           |            |         | •                                |                      | (12)                   | (14) |
| 180             | 7.5kW                      | H4T7515BS26 |             | •          |         | •                                | Ø42                  | (12)                   | (16) |
| 180             | (380V)                     | H4T7515BE16 | •           |            | •       | •                                | 042                  | 6                      | (14) |
|                 |                            | H4T7515BE26 |             | •          | •       | •                                |                      | 6                      | (16) |

# 13.11 Cable Information

| Cable Name                   | Cable Model        | Cable<br>Length | Cable Appearance                                                     | No.        |
|------------------------------|--------------------|-----------------|----------------------------------------------------------------------|------------|
|                              | JSS7-C-PWB075-3.0  | 3.0 m           | L±30.0mm                                                             |            |
|                              | JSS7-C-PWB075-5.0  | 5.0 m           |                                                                      | 1          |
|                              | JSS7-C-PWB075-10.0 | 10.0 m          |                                                                      |            |
|                              | JSS7-C-PWB062-3.0  | 3.0 m           | Terminal A L1±30mm Terminal B                                        |            |
|                              | JSS7-C-PWB062-5.0  | 5.0 m           |                                                                      | 2          |
|                              | JSS7-C-PWB062-10.0 | 10.0 m          | Shrink tubing                                                        |            |
|                              | JSS7-C-PWB152-3.0  | 3.0 m           | Terminal A L1±30mm Terminal B<br>Outlet of the connector cable       |            |
|                              | JSS7-C-PWB152-5.0  | 5.0 m           |                                                                      | 3          |
| Power cable                  | JSS7-C-PWB152-10.0 | 10.0 m          | Surmix tuoing<br>20mm<br>250±10mm                                    |            |
| with brake                   | JSS7-C-PWB142-3.0  | 3.0 m           | Terminal A L1±30mm Terminal B Outlet of the connector cable ,50±10mm |            |
|                              | JSS7-C-PWB142-5.0  | 5.0 m           |                                                                      | 4          |
|                              | JSS7-C-PWB142-10.0 | 10.0 m          | 20mm - 250±10mm PIN6                                                 |            |
|                              | JSS7-C-PWB053-3.0  | 3.0 m           | Terminal A Terminal B<br>Outlet of the connector cable               |            |
|                              | JSS7-C-PWB053-5.0  | 5.0 m           | Subject of the connector care                                        | 5          |
|                              | JSS7-C-PWB053-10.0 | 10.0 m          | Shrink tubing                                                        |            |
|                              | JSS7-C-PWB143-3.0  | 3.0 m           | Terminal A L1±30mm Terminal B Outlet of the connector cable 50±10mm  |            |
|                              | JSS7-C-PWB143-5.0  | 5.0 m           |                                                                      | 6          |
|                              | JSS7-C-PWB143-10.0 | 10.0 m          | Shrink tubing                                                        |            |
|                              | JSS7-C-PWR075-3.0  | 3.0 m           | L±30.0mm                                                             |            |
|                              | JSS7-C-PWR075-5.0  | 5.0 m           | 10.0±2.0mm<br>50.0±5.0mm                                             | $\bigcirc$ |
|                              | JSS7-C-PWR075-10.0 | 10.0 m          |                                                                      |            |
|                              | JSS7-C-PWR062-3.0  | 3.0 m           | Terminal A L1±30mm Terminal B                                        |            |
| Power cable<br>without brake | JSS7-C-PWR062-5.0  | 5.0 m           | Surink tubing                                                        | 8          |
|                              | JSS7-C-PWR062-10.0 | 10.0 m          | Outlet of the connector cable                                        |            |
|                              | JSS7-C-PWR152-3.0  | 3.0 m           | Terminal A L1±30mm Terminal B                                        |            |
|                              | JSS7-C-PWR152-5.0  | 5.0 m           |                                                                      | 9          |
|                              | JSS7-C-PWR152-10.0 | 10.0 m          | Oulet of the connector cable                                         |            |

| Cable Name                                 | Cable Model            | Cable<br>Length | Cable Appearance                  | No.  |  |  |  |
|--------------------------------------------|------------------------|-----------------|-----------------------------------|------|--|--|--|
|                                            | JSS7-C-PWR142-3.0      | 3.0 m           | Terminal A L1±30mm Terminal B     |      |  |  |  |
|                                            | JSS7-C-PWR142-5.0      | 5.0 m           |                                   | 10   |  |  |  |
|                                            | JSS7-C-PWR142-10.0     | 10.0 m          | Outlet of the connector cable     |      |  |  |  |
|                                            | JSS7-C-PWR053-3.0      | 3.0 m           | Terminal A                        |      |  |  |  |
| Power cable<br>without brake               | JSS7-C-PWR053-5.0      | 5.0 m           |                                   | 1    |  |  |  |
|                                            | JSS7-C-PWR053-10.0     | 10.0 m          | Outlet of the connector cable     |      |  |  |  |
|                                            | JSS7-C-PWR143-3.0      | 3.0 m           | Terminal A + L1±30mm + Terminal B |      |  |  |  |
|                                            | JSS7-C-PWR143-5.0      | 5.0 m           | Sut-fram                          |      |  |  |  |
|                                            | JSS7-C-PWR143-10.0     | 10.0 m          | Outlet of the connector cable     |      |  |  |  |
|                                            | JSS7-C-ENC075-3.0      | 3.0 m           | L±30.0mm                          |      |  |  |  |
|                                            | JSS7-C-ENC075-5.0      | 5.0 m           |                                   |      |  |  |  |
| Single-turn                                | JSS7-C-ENC075-10.0     | 10.0 m          |                                   |      |  |  |  |
| encoder cable                              | JSS7-C-ENC072-3.0      | 3.0 m           | Terminal A L1±30mm → Terminal B   |      |  |  |  |
|                                            | JSS7-C-ENC072-5.0      | 5.0 m           |                                   | (14) |  |  |  |
|                                            | JSS7-C-ENC072-10.0     | 10.0 m          |                                   |      |  |  |  |
|                                            | JSS7-C-ENC075-BAT-3.0  | 3.0 m           | L±30.0mm                          |      |  |  |  |
|                                            | JSS7-C-ENC075-BAT-5.0  | 5.0 m           |                                   |      |  |  |  |
| Multiple-turn                              | JSS7-C-ENC075-BAT-10.0 | 10.0 m          |                                   |      |  |  |  |
| encoder cable                              | JSS7-C-ENC072-BAT-3.0  | 3.0 m           | Terminal A L1±30mm                |      |  |  |  |
|                                            | JSS7-C-ENC072-BAT-5.0  | 5.0 m           |                                   | (16) |  |  |  |
|                                            | JSS7-C-ENC072-BAT-10.0 | 10.0 m          |                                   |      |  |  |  |
| Servo drive<br>100-gigabit                 | JSS7-C-NET-0.3         | 0.3 m           |                                   | _    |  |  |  |
| communication<br>network cable             | JSS7-C-NET-3           | 3.0 m           | L±10.0mm                          |      |  |  |  |
| Type-c-to-serial<br>commissioning<br>cable | JSS7-C-DBG             | -               |                                   | -    |  |  |  |
| DB15 terminal accessories                  | JSS7-DB15              | -               | Welding surface                   | -    |  |  |  |

| Cable Name             | Cable Model | Cable<br>Length | Cable Appearance | No. |
|------------------------|-------------|-----------------|------------------|-----|
| Battery<br>accessories | JSS7-BAT    | -               |                  | -   |

# NOTICE

• For cables related to frames of model 100 and above models, contact the manufacturer.

# Chapter 14 Peripheries

# 14.1 List of Peripheries

| Component<br>Name           | Installation<br>Location | Applicable<br>Model | Description                                                                                                                                                                                       |
|-----------------------------|--------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fuse and circuit<br>breaker | Input side of the drive  | All                 | To comply with EN 61800-5-1 and UL 61800-5-1 standards, install a fuse/circuit breaker on the input side of the servo drive to prevent accidents caused by short circuit in the internal circuit. |
| AC input reactor            | Input side of the drive  | All                 | Eliminate harmonics and improves the power factor on the input side.                                                                                                                              |
| EMC filter                  | Input side of the drive  | All                 | Reduce the conducted and radiated interference that escapes from the servo drive to the outside.                                                                                                  |
| Magnetic ring               | Output side of the drive | All                 | Reduce interference to the outside and the bearing current.                                                                                                                                       |
| - •                         | Signal cable             | All                 | Improve the anti-interference performance of signals.                                                                                                                                             |

# 14.2 Fuse

To prevent accidents caused by short circuit, install a fuse on the input side of the drive.

| D      | rive Model         | Rated Input | Recommended Fuse |               |         |  |  |  |
|--------|--------------------|-------------|------------------|---------------|---------|--|--|--|
| D      | rive Model         | Current     | Manufacturer     | Rated Current | Model   |  |  |  |
|        | Single-phase 220 V |             |                  |               |         |  |  |  |
| SIZE A | JSS715N2T1R6       | 2.3 A       | Bussmann         | 15 A          | FWP-15B |  |  |  |
| SIZE A | JSS715N2T2R8       | 4A          | Bussmann         | 20 A          | FWP-20B |  |  |  |
| SIZE B | JSS715N2T5R5       | 7.9A        | Bussmann         | 35 A          | FWP-35C |  |  |  |
| SIZE C | JSS715N2T7R6       | 9.6A        | Bussmann         | 40 A          | FWP-40C |  |  |  |
| SIZE D | JSS715N2T012       | 12.8A       | Bussmann         | 40 A          | FWP-40C |  |  |  |
|        | Three-phase 220 V  |             |                  |               |         |  |  |  |
| SIZE C | JSS715N2T7R6       | 5.1 A       | Bussmann         | 50 A          | FWP-50C |  |  |  |

| D                 | rive Model   | Rated Input | Recommended Fuse |               |          |  |  |
|-------------------|--------------|-------------|------------------|---------------|----------|--|--|
| D                 | rive Model   | Current     | Manufacturer     | Rated Current | Model    |  |  |
| SIZE D            | JSS715N2T012 | 8A          | Bussmann         | 50 A          | FWP-50C  |  |  |
| Three-phase 380 V |              |             |                  |               |          |  |  |
| SIZE C            | JSS715N4T3R5 | 2.4 A       | Bussmann         | 15A           | FWP-15B  |  |  |
| SIZE C            | JSS715N4T5R4 | 3.6A        | Bussmann         | 20 A          | FWP-20B  |  |  |
| SIZE D            | JSS715N4T8R4 | 5.6A        | Bussmann         | 20 A          | FWP-20B  |  |  |
| SIZE D            | JSS715N4T012 | 8A          | Bussmann         | 50 A          | FWP-50C  |  |  |
| SIZE E            | JSS715N4T017 | 12A         | Bussmann         | 50 A          | FWP-50C  |  |  |
| SIZE E            | JSS715N4T021 | 16A         | Bussmann         | 70 A          | FWP-70C  |  |  |
| SIZE E            | JSS715N4T026 | 21 A        | Bussmann         | 125 A         | FWP-125C |  |  |

# 14.3 Electromagnetic Contactor

| D      | rive Model   | Rated Input | Recommended Contactor |               |         |  |  |
|--------|--------------|-------------|-----------------------|---------------|---------|--|--|
| D      | rive Model   | Current     | Manufacturer          | Rated Current | Model   |  |  |
|        |              | S           | ingle-phase 220 V     |               |         |  |  |
| SIZE A | JSS715N2T1R6 | 2.3 A       | Schneider             | 9A            | LC1 D09 |  |  |
| SIZE A | JSS715N2T2R8 | 4A          | Schneider             | 9A            | LC1 D09 |  |  |
| SIZE B | JSS715N2T5R5 | 7.9 A       | Schneider             | 9A            | LC1 D09 |  |  |
| SIZE C | JSS715N2T7R6 | 9.6A        | Schneider             | 12 A          | LC1 D12 |  |  |
| SIZE D | JSS715N2T012 | 12.8A       | Schneider             | 18 A          | LC1 D18 |  |  |
|        |              | Т           | Three-phase 220 V     | · · ·         |         |  |  |
| SIZE C | JSS715N2T7R6 | 5.1 A       | Schneider             | 9A            | LC1 D09 |  |  |
| SIZE D | JSS715N2T012 | 8A          | Schneider             | 9A            | LC1 D09 |  |  |
|        |              | Т           | Three-phase 380 V     | · · ·         |         |  |  |
| SIZE C | JSS715N4T3R5 | 2.4 A       | Schneider             | 9A            | LC1 D09 |  |  |
| SIZE C | JSS715N4T5R4 | 3.6A        | Schneider             | 9A            | LC1 D09 |  |  |
| SIZE D | JSS715N4T8R4 | 5.6A        | Schneider             | 9A            | LC1 D09 |  |  |
| SIZE D | JSS715N4T012 | 8A          | Schneider             | 9A            | LC1 D09 |  |  |

| Drive Model |              | Rated Input | Recommended Contactor |               |         |  |  |
|-------------|--------------|-------------|-----------------------|---------------|---------|--|--|
| D           | rive wiodei  | Current     | Manufacturer          | Rated Current | Model   |  |  |
| SIZE E      | JSS715N4T017 | 12A         | Schneider             | 12 A          | LC1 D12 |  |  |
| SIZE E      | JSS715N4T021 | 16A         | Schneider             | 18A           | LC1 D18 |  |  |
| SIZE E      | JSS715N4T026 | 21 A        | Schneider             | 25 A          | LC1 D25 |  |  |

# 14.4 Circuit Breaker

| Drive Model |                    | Rated Input | Recommended Contactor |               | etor        |
|-------------|--------------------|-------------|-----------------------|---------------|-------------|
|             |                    | Current     | Manufacturer          | Rated Current | Model       |
|             | Single-phase 220 V |             |                       |               |             |
| SIZE A      | JSS715N2T1R6       | 2.3 A       | Schneider             | 4 A           | OSMC32N2C4  |
| SIZE A      | JSS715N2T2R8       | 4A          | Schneider             | 6A            | OSMC32N2C6  |
| SIZE B      | JSS715N2T5R5       | 7.9 A       | Schneider             | 16A           | OSMC32N2C16 |
| SIZE C      | JSS715N2T7R6       | 9.6A        | Schneider             | 16A           | OSMC32N2C16 |
| SIZE D      | JSS715N2T012       | 12.8A       | Schneider             | 20 A          | OSMC32N2C20 |
|             |                    | Т           | Three-phase 220 V     |               |             |
| SIZE C      | JSS715N2T7R6       | 5.1 A       | Schneider             | 10A           | OSMC32N2C10 |
| SIZE D      | JSS715N2T012       | 8A          | Schneider             | 16A           | OSMC32N2C16 |
|             |                    | Т           | Three-phase 380 V     |               |             |
| SIZE C      | JSS715N4T3R5       | 2.4 A       | Schneider             | 4 A           | OSMC32N2C4  |
| SIZE C      | JSS715N4T5R4       | 3.6A        | Schneider             | 6A            | OSMC32N2C6  |
| SIZE D      | JSS715N4T8R4       | 5.6 A       | Schneider             | 10A           | OSMC32N2C10 |
| SIZE D      | JSS715N4T012       | 8A          | Schneider             | 16A           | OSMC32N2C16 |
| SIZE E      | JSS715N4T017       | 12 A        | Schneider             | 20 A          | OSMC32N2C20 |
| SIZE E      | JSS715N4T021       | 16A         | Schneider             | 25 A          | OSMC32N2C25 |
| SIZE E      | JSS715N4T026       | 21 A        | Schneider             | 32 A          | OSMC32N2C32 |

### 14.5 Absolute Encoder Battery

| D-44 6                    | Item and Unit                                         | Ratings |         |      | D                                       |
|---------------------------|-------------------------------------------------------|---------|---------|------|-----------------------------------------|
| Battery Spec.             | item and Onit                                         | Min.    | Typical | Max. | Requirements                            |
|                           | External battery volt-age (V)                         | 3.2     | 3.6     | 5    | In standby state <sup>[1]</sup>         |
|                           | Circuit fault voltage (V)                             | -       | 2.6     | -    | In standby state                        |
|                           | Battery alarm voltage (V)                             | 2.85    | 3       | 3.15 | -                                       |
|                           | Current consumed by the circuit (µA)                  | -       | 2       | -    | In normal operation <sup>[2]</sup>      |
| Output<br>Specifications: |                                                       | -       | 10      | -    | In standby state, shaft at a standstill |
| 3.6V 2500mAh              |                                                       | -       | 80      | -    | In standby state, shaft rotating        |
|                           | Ambient temperature during<br>battery opera-tion (°C) | 0       | -       | 40   | Same as the motor                       |
|                           | Battery storage tem-perature<br>(°C)                  | -20     | -       | 60   | Same as the motor                       |

Select an appropriate battery according to the following table.

### NOTICE

- The preceding data is measured at an ambient temperature of 20°C.
- [1] The "standby state" means that the encoder performs multi-turn counting by using the power from an external battery when the servo drive power supply is off. In this case, data transmission stops.
- [2] The "normal operation" means that the absolute encoder supports single-turn or multi-turn data counting and transceiving. Power on the servo drive after connecting the absolute encoder properly. The encoder starts data transmission after a short delay of about 5s after power-on. The motor speed must be lower than or equal to 10 rpm during transition from the standby state to the normal operation state (upon power-on). Otherwise, E740 (Encoder fault) may be reported. In this case, power off and power on the servo drive again.
- Theoretically, a battery can be used for two years, but different working conditions and environments can lead to significant differences.

# Chapter 15 Maintenance

### **15.1 Daily Maintenance**

Standard operating conditions:

- 30°C (annual average ambient temperature)
- Average load rate < 80%</li>
- Daily operation time < 20 hours</li>

Due to the influence of ambient temperature, humidity, dust, and vibration, the internal components of the device may age and be damaged, causing faults or reducing the service life of the device. Therefore, to ensure the normal function of the device and prevent damage, refer to the following items for daily inspection and cleaning.

#### Check

- The ambient temperature and humidity are normal. There is no dust or unwanted objects in the servo drive.
- There is no abnormal vibration or noise for the device.
- The voltage of the power supply is normal.
- There is no strange smell.
- There are no fibers adhered to the air inlet.
- There is no intrusion of unwanted objects on the load end.

#### Cleaning

- Clear the dust, especially metallic dust, on the drive surface to prevent the dust from entering the drive.
- Keep the drive in a well ventilated environment.
- Keep the front end of the servo drive and the connectors clean.

# **CAUTION**

- Disconnect the power supply before cleaning. Use a blower gun or dry cloth to clean the equipment.
- Do not use gasoline, diluent, alcohol, acidic and alkaline detergents, to prevent discoloration or damage to the enclosure.

### **15.2 Periodic Maintenance**

The electrical and electronic parts inside the servo drive may be mechanically worn out and degraded. Perform periodic maintenance according to the following table.

Contact us or the agent before replacement to double check whether the part needs to be replaced.

| Object | Туре                                                 | Standard Replacement Interval                                                                                  |
|--------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
|        | Bus filter capacitor                                 | About 5 years                                                                                                  |
|        | Cooling fan                                          | 2 to 3 years (10,000 h to 30,000 h)                                                                            |
| Drive  | Aluminum electrolytic capacitor of the circuit board | About 5 years                                                                                                  |
|        | Pre-charge relay                                     | 100,000 operations (depending on the operating conditions)                                                     |
|        | Pre-charge resistor                                  | 20,000 operations (depending on the operating conditions)                                                      |
|        | Bearing                                              | 3 to 5 years (20,000 h to 30,000 h)                                                                            |
|        | Oil Seal                                             | 5000 hours                                                                                                     |
| Motor  | Encoder                                              | 3 to 5 years (20,000 h to 30,000 h)                                                                            |
|        | Absolute encoder battery                             | Depends on the operating conditions.<br>See the operation instructions for the encoder<br>battery for details. |

### 15.3 Part Replacement

### 15.3.1 Plain Key Replacement



- Observe the uninstallation requirements described in this chapter. Failure to comply may result in equipment fault or damage.
- Disassembly by force is strictly prohibited to prevent injury to hands from bumps and knocks.

Currently, the plain keys for JSSMK1 standard motors with 60/80/130 frames have been unified to B-type plain keys, and come with key extraction holes. The specifications for the key extraction screws are as listed in the following table.

| Motor Mode | Flat Key Size                    | Screw Specifications<br>(Hexagon Screw Recommended) |  |
|------------|----------------------------------|-----------------------------------------------------|--|
| 40 frame   | A-type plain key - A3 x 3 x 14   | Without key extraction holes                        |  |
| 60 frame   | B-type plain key - B5 x 5 x 16.5 | M3x10 and above                                     |  |
| 80 frame   | B-type plain key - B6 x 6 x 25   | M3x15 and above                                     |  |
| 100 frame  | C-type plain key - C8 x 7 x 35   | M3x20 and above                                     |  |
| 130 frame  | B-type plain key - B8 x 7 x 35   | M3x20 and above                                     |  |
| 180 frame  | C-type plain key - C10 x 8 x 64  | M3x20 and above                                     |  |

### Tools: Internal hexagonal wrench

### **Disassembly procedure:**

- ① Prepare key extraction screws (hexagon bolts as recommended) of the corresponding specifications according to the motor models.
- (2) Use an Allen key to turn the screws clockwise until the A-A end of the plain key completely disengages from the keyway. This will allow you to remove the plain key.

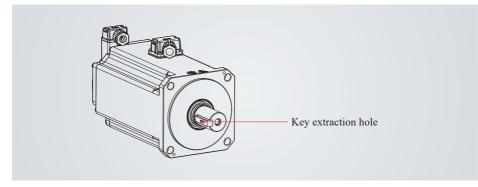



Figure 15-1 Plain key disassembly

### 15.3.2 Oil Seal Replacement

### Tools: Needle-nose pliers, non-slip gloves, and cotton cloth

#### **Disassembly procedure:**

- ① Put a cotton cloth at support point B to protect the end bracket against scratch during disassembly.
- ② Fix the motor and prop the oil seal outer lip at point A with one end of the needle-nose pliers.
- ③ Pry out the oil seal slowly at point B.

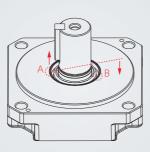



Figure 15-2 Oil seal disassembly

# Chapter 16

# Troubleshooting for Common EMC Issues

### **16.1 RCD Malfunction**

If a residual current device (RCD) is needed, select the RCD according to the following requirements:

- Use a B-type RCD because the drive may generate DC leakage current in the protective conductor.
- For each drive, use an RCD whose tripping current is not lower than 100 mA to prevent RCD malfunction due to high-frequency leakage current generated by the drive.
- When multiple drives are connected in parallel and share one RCD, select an RCD whose tripping current is not lower than 300 mA.
- Use Chint or Schneider RCDs (recommended).

When an RCD malfunctions, perform troubleshooting according to the following table.

| Fault                  | Possible Cause                                                                         | Solution                                                                                                                                                      |  |
|------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                        | The anti-interference performance of the RCD is poor.                                  |                                                                                                                                                               |  |
| Tripping upon power on | The rated tripping current of the RCD is too low.                                      | <ul><li>Use an RCD from a recommended brand.</li><li>Use an RCD with a high tripping current.</li></ul>                                                       |  |
| Tripping upon power-on | An unbalanced load is connected to the rear end of the RCD.                            | • Move the unbalanced load to the front<br>end of the earth leakage circuit breaker.                                                                          |  |
|                        | The ground capacitance at the front end of the drive is high.                          |                                                                                                                                                               |  |
|                        | The anti-interference performance of the RCD is poor.                                  | <ul><li>Use an RCD from a recommended brand.</li><li>Use an RCD with a high tripping current.</li></ul>                                                       |  |
| Tripping during        | The rated tripping current of the RCD is too low.                                      | <ul> <li>Use an RCD with a high hipping current.</li> <li>Install a simple filter on the input side of<br/>the drive, and wind the LN/RST cable on</li> </ul> |  |
| operation              | An unbalanced load is connected to the rear end of the RCD.                            | a magnetic ring near the RCD.<br>Reduce the carrier frequency without                                                                                         |  |
|                        | The ground distributed capacitance<br>of the motor cable and the motor is<br>too high. |                                                                                                                                                               |  |

### **16.2 Harmonic Suppression**

To suppress the harmonic current of the servo drive and improve the power factor, install an AC input reactor on the input side of the servo drive to meet standard requirements.

The following figure shows the reactor mounting mode.

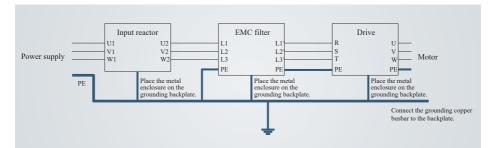



Figure 16-1 Reactor mounting mode

### 16.3 Control Circuit Interference

### 16.3.1 Common I/O Signal Interference

The drive generates very strong interference during operation. In the case of improper routing or grounding, the drive may interfere with or be interfered with by other devices. In such a case, take the following measures.

- Use shielded cables as the I/O signal cables and connect the shield to the PE terminal.
- Reliably connect the PE terminal of the motor to the PE terminal of the servo drive, and connect the PE terminal of the servo drive to the PE terminal of the grid.
- Add an equipotential bonding grounding wire between the host controller and the drive.
- Add a magnetic ring for the U/V/W output cable of the drive. Wind the cable on the ring for two to four turns.
- Increase the filter capacitance at low-speed DI terminals. A maximum of 0.1 µF capacitance is recommended.
- Increase the filter capacitance between AI and GND terminals. A maximum of 0.22 µF capacitance is recommended.
- Add a magnetic buckle or magnetic ring for the signal cable. Wind the signal cable on the buckle or ring for one or two turns.
- Use shielded cables as power cables and ground the shield securely.

### 16.3.2 EtherCAT Communication Interference

In such a case, take the following measures.

- Check that the communication network cables meet the specification requirements for Cat5e shielded cables.
- Check that the communication port is secure and in good contact.
- Separate communication cables from power cables by a distance of at least 30 cm.
- Add equipotential grounding cables between nodes in the case of multi-node communication.
- Check that any cable between two nodes is within 100 m in length.
- Add a magnetic buckle at each end of the communication cable. Wind the communication cable on the buckle for one or two turns.
- Add a magnetic ring for the U/V/W output cable of the drive. Wind the cable on the ring for two to four turns.
- Use shielded cables as power cables and ground the shield securely.

# Chapter 17 Certification and Standard

# 17.1 CE Certification

| Directives                       | Standards    |
|----------------------------------|--------------|
| EMC Directive 2014/30/EU         | EN 61800-3   |
|                                  | EN 61800-5-1 |
| Low Voltage Directive 2014/35/EU | EN 60034     |
| RoHS Directive 2011/65/EU        | EN 50581     |

# 17.2 UL/cUL Certification

| Certification | Standards                         |
|---------------|-----------------------------------|
|               | UL61800-5-1<br>C22.2 No.274-17    |
|               | UL 1004-6<br>CSA C22.2 No. 100-14 |

I

| Notes |      |  |
|-------|------|--|
|       |      |  |
|       |      |  |
|       |      |  |
|       |      |  |
|       |      |  |
|       |      |  |
|       |      |  |
|       |      |  |
|       |      |  |
|       |      |  |
|       | <br> |  |
|       |      |  |
|       |      |  |
|       |      |  |
|       |      |  |
|       |      |  |
|       | <br> |  |
|       |      |  |
|       |      |  |

# **Revision History**

| Date      | Changed Version | Change Description |
|-----------|-----------------|--------------------|
| July 2024 | A00             | First release      |

### Changzhou Jinsanshi Mechatronics Co., Ltd.

Tel: 0519-86922057 Email: admin@jss-motor.com

Address: No. 135 Dailuo Road, Luoyang Town, Wujin District, and Technology Innovation Center, Henglin Town, Economic Development Zone, Changzhou City, Jiangsu Province. https://www.jssmotor.com/

