

CAD/CAM ZIRCONIA

Shenzhen Gusrom Biotechnology Co. Ltd

Room 301-1, Building A, Shengbaina Industrial Park, No. 6-4,7 Lane Lingjiao South ,
Shijing Community, Shijing Street, Pingshan District, Shenzhen

▲ Stability

Product Category

	4D X ML	4D PRO ML	3D PRO ML	UT Series	SHT Series	ST Series	HT PLUS
Strengh & Translucency	1300~800Mpa 43%~57%	1200 ~ 700Mpa 46%~57%	Aesthetic: 1050~700Mpa 46%~57% Premium: 1050~700Mpa 46%~57%	≥600Mpa 49%	≥900Mpa 46%	≥1100Mpa 43%	≥1200Mpa 40%
White				A Stability I T Strength Asstration was a strength of the stre		ST 14MM A2 - 1750 M/s CN - 175 Stability - 17 Strength - 17 Strength - 18 Hard Hard Mark - Anothetics - Ano	A Stability Little Total Total Conference of Conference o
Shaded					SHT SMOOT 14MM A2 PROPERTY AND ACTION ASSESSMENT ASSES	ST Shood I AMM A2 s 100 Mg Cash Cash Cash Cash Cash Cash Cash Cash	
Multilayer	ADX ML 14MM A2 Discretion Discretion Discretion Discretion A Stability In Strength A Matchesize M	4D PRO ML SLOYER 14MM A2 TRIS-70000 433-738 A Stability Tris-7	3D PROML 14M/ Suprant 14MM A2 Prend Layor 14MM	T 14 MM A2 **Control ** ASSTRATE **T Strength **T Stren	SHT Det cd syers 14 MM A2 **SQ MA ASSERTED *	ST 14MM A2 **Did High City **Acchetics	

Product Indications

Indications Product	Veneer	Onlay	Anterior crown	Posterior crown	Full arch crown bridge	Implant	Full crown bridge	Anterior three-unit bridge
4D X ML	•	•	•	•	•	•	•	•
4D PRO ML	•	•	•	•		•	•	•
3D PRO ML Aesthetic & Premium	•	•	•	•	•	•	•	•
UT ML	•	•	•	•				•
UT White	•	•	•	•				•
SHT ML	•	•	•	•				•
SHT Shaded		•	•	•	•		•	•
ST ML	•	•	•	•				•
ST White		•	•	•	•	•	•	•
ST Shaded		•	•	•	•	•	•	•
HT PLUS		•	•	•	•	•	•	•

Support

Disapprove

4D X ML

8 Layers Multilayer Color

Indications

Colors

System

Case 1

Case 2

- Made in industry 4.0
- 100% TOSOH
- 8 superimposed layers 15 gradient layers
- Life-like shade gadient, no obvious layer line
- Incisal area with high translucency close to natural teeth

Physical parameters

Sintered density	6.08±0.03g/cm ³	Transmittance	43%-57%
Bending strength	1300-800 MPa(Av.)	Hardness	1200HV
Sintering temperature	Recommend 1500°C		

4D PRO ML

8 Layers Multilayer Color

Indications

Colors

System

Case 1

Case 2

- Made in industry 4.0
- 8 layers Multilayer color
- From 43% to 57% gradient for translucency
- Strength shows gradient from 700MPa to 1200MPa
- Suitable for anterior, crown and 14 unit bridges

Physical parameters

Sintered density	6.07±0.03g/cm ³	Transmittance	43%-57%
Bending strength	1200-700 MPa(Av.)	Hardness	1200HV
Sintering temperature	Recommend 1500°C		

3D PRO ML

Aesthetic 6 Layers Multilayer Color

Indications

Colors

System

Case 1

Case 2

- Made in industry 4.0
- Multi-layer gradient structure closely resembling natural dentition.
- Featuring a translucency gradient decreasing from 57% at the incisal edge to 43% in the cervical region, replicating the natural enamel translucency pattern of physiological tooth structure.
- Strength shows gradient from 700MPa to 1050MPa

Physical parameters

Sintered density	6.07±0.03g/cm ³	Transmittance	46%-57%
Bending strength	1050-700 MPa(Av.)	Hardness	1200HV
Sintering temperature	Recommend 1500°C		

3D PRO ML

Premium

6 Layers Multilayer Color

Indications

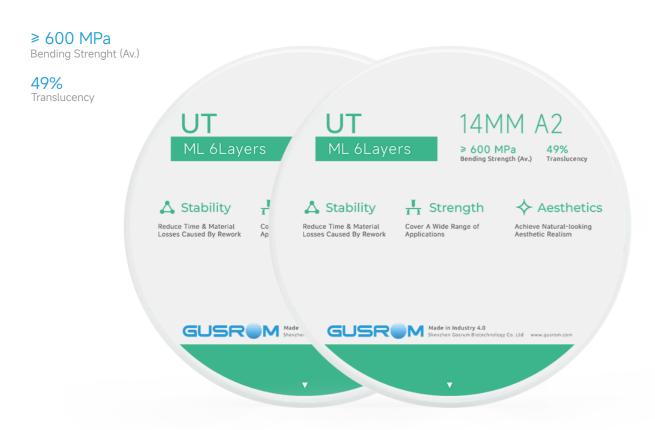
Colors

System

Case 1

Case 2

- Made in industry 4.0
- Multi-layer gradient structure closely resembling natural dentition.
- Featuring a translucency gradient decreasing from 57% at the incisal edge to 43% in the cervical region, replicating the natural enamel translucency pattern of physiological tooth structure.
- Strength shows gradient from 800 MPa to 1200MPa


Physical parameters

Sintered density	6.07±0.03g/cm ³	Transmittance	43%-57%
Bending strength	1200-800 MPa(Av.)	Hardness	1200HV
Sintering temperature	Recommend 1500°C		

UT ML

5 Layers Multilayer Color

Indications

Colors

System

Case 1

Case 2


- Made in industry 4.0
- 5-layer stacked structure with 9-level gradient transition
- Superior light transmission characteristics
- Refined surface luster mimicking natural enamel prismatic effects

Physical parameters

Sintered density	6.07±0.03g/cm ³	Transmittance	49%
Bending strength	≥ 600 MPa(Av.)	Hardness	1200HV
Sintering temperature	Recommend 1450°C		

White

UT White

Indications

Colors

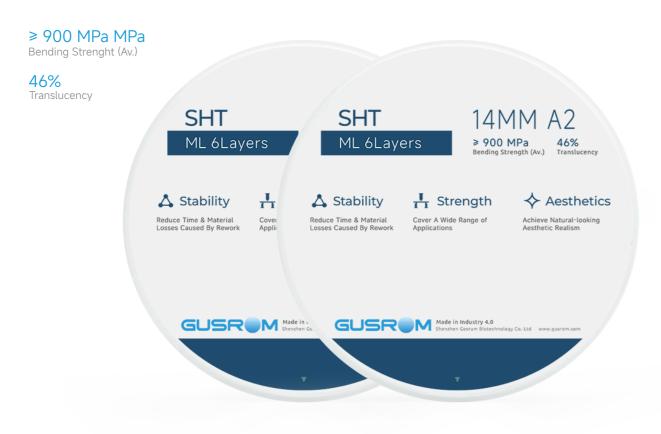
Colors after internal dyeing

System

Case 1

Case 2

- Made in industry 4.0
- It features a delicate and translucent appearance
- delivering an outstanding aesthetic effect


Physical parameters

Sintered density	6.08±0.03g/cm ³
Bending strength	≥ 600 MPa(Av.)
Sintering temperature	Recommend 1500°C

Transmittance	49%
Hardness	1200HV

SHT ML 6 Layers Multilayer Color

Indications

Colors

System

Case 1

Case 2

- Made in industry 4.0
- No internal staining is required. The gradient color restores the appearance of natural real teeth
- \bullet The color display effect is stable, and the transition at the incisal edge is natural

Physical parameters

Sintered density	6.07±0.03g/cm ³	Transmittance	46%
Bending strength	≥ 900 MPa(Av.)	Hardness	1200HV
Sintering temperature	Recommend 1500°C		

Shaded

SHT Shaded

Indications

Colors

System

Case 1

Case 2

- Made in industry 4.0
- No staining is required, saving both time and effort
- Pre-staining precisely matches the VITA "Classic 16 Colors"

Physical parameters

Sintered density	6.07±0.03g/cm ³	Transmittance	46%
Bending strength	≥ 900 MPa(Av.)	Hardness	1200HV
Sintering temperature	Recommend 1500°C		

STML 6 Layers Multilayer Color

Indications

Colors

System

Case 1

Case 2

- Made in industry 4.0
- Pre-stained with multiple colors, achieving a natural gradient
- It is simple to operate, stable and highly efficient

Physical parameters

Sintered density	6.07±0.03g/cm ³	Transmittance	43%
Bending strength	≥ 1100 MPa(Av.)	Hardness	1200HV
Sintering temperature	Recommend 1530°C		

ST Shaded Shaded

Indications

Colors

System

Case 1

Case 2

- Made in industry 4.0
- Pre-stained, and the operation is simple
- No need for staining, saving time and effort

Physical parameters

Sintered density	6.07±0.03g/cm ³	Transmittance	43%
Bending strength	≥ 1100 MPa(Av.)	Hardness	1200HV
Sintering temperature	Recommend 1500°C		

ST White

Colors

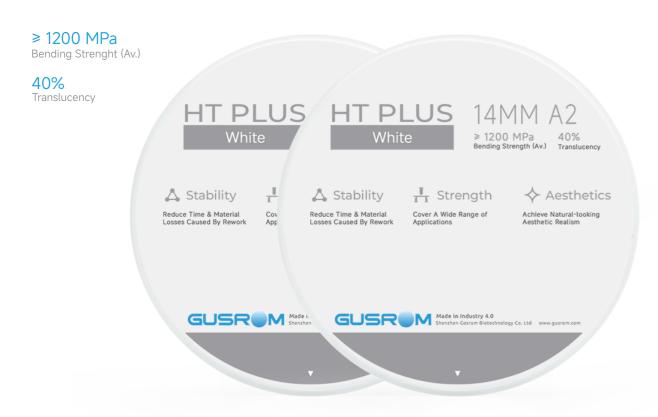
Colors after internal dyeing

System

Case 1

Case 2

- Made in industry 4.0
- It has even more excellent light transmittance and extremely high flexural strength
- It features a superior personalized internal staining solution, with stable coloring performance


Physical parameters

Sintered density	6.07±0.03g/cm ³	Transmittance	43%
Bending strength	≥ 1200 MPa(Av.)	Hardness	1200HV
Sintering temperature	Recommend 1530°C		

HT PLUS

White

Indications

Colors

Colors after internal dyeing

System

Case 1

Case 2

- Made in industry 4.0
- It has excellent translucency performance and extremely high flexural strength
- It has a superior personalized internal staining solution, and the coloring performance is stable

Physical parameters

Sintered density	6.07±0.03g/cm ³	Transmittance	40%
Bending strength	≥ 1200 MPa(Av.)	Hardness	1200HV
Sintering temperature	Recommend 1530°C		

Sintering Temperature

The sinterring curves of **UT White**

1 to 3 units 8h

Step	Temp (°c)	Time (min)	Rate (°C/min)
Step 1	20-1000	109	9
Step 2	1000-1200	40	5
Step 3	1200-1200	30	0
Step 4	1200-1450	83	3
Step 5	1450-1450	120	0
Step 6	1450-800	92	7
Step 7	800- Room	Natural cooling	/

Fast Sintering 1 to 3 units 3h

Step	Temp (°c)	Time (min)	Rate (°C/min)		
Step 1	20-300	10	28		
Step 2	300-300	5	0		
Step 3	300-1200	30	30		
Step 4	1200-1450	28	9		
Step 5	1450-1450	60	0		
Step 6	1450-800	33	20		
Step 7	800- Room	Natural cooling	/		

The final sintering result will be affected by various factors such as the accuracy of the path, impression, or digital scanning file CAD/CAM design, milling, staining, and try-on skills. Please follow the Gusrom standard sintering procedure to achieve the desired results.

The sinterring curves of

HT PLUS/ST White/ST Shaded/ST ML/3D PRO ML Premium

1 to3 units 8h

Step	Temp (°C)	Time (min)	Rate (°C/min)
Step 1	20-1000	109	9
Step 2	1000-1200	40	5
Step 3	1200-1200	30	0
Step 4	1200-1530	110	3
Step 5	1530-1530	120	0
Step 6	1530-800	104	7
Step 7	800- Room temp	Natural cooling	/

4-6 units 12h

Step	Temp (°c)	Time (min)	Rate (°C/min)
Step 1	20-1000	295	4
Step 2	1200-1200	60	0
Step 3	1200-1530	110	3
Step 4	1530-1530	120	0
Step 5	1530-800	146	5
Step 6	800- Room temp	Natural cooling	/

7 and more units 15h

Step	Temp (°C)	Time (min)	Rate (°C/min)
Step 1	20-1000	393	3
Step 2	1200-1200	60	0
Step 3	1200-1530	165	2
Step 4	1530-1530	120	0
Step 5	1530-800	209	3.5
Step 6	800- Room	Natural cooling	/

Fast Sintering 1 to 3 units 3h

Step	Temp (°C)	Time (min)	Rate (°C/min)
Step 1	20-300	10	28
Step 2	300-300	5	0
Step 3	300-1200	30	30
Step 4	1200-1530	37	9
Step 5	1530-1530	60	0
Step 6	1530-800	37	20
Step 7	800- Room temp	Natural cooling	/

The sinterring curves of

SHT White/SHT Shaded/SHT ML/3D PRO ML Aesthetic/4D PRO ML/4D X ML

1 to3 units 8h

Step	Temp (°C)	Time (min)	Rate (°C/min)
Step 1	20-1000	109	9
Step 2	1000-1200	40	5
Step 3	1200-1200	30	0
Step 4	1200-1500	100	3
Step 5	1500-1500	120	0
Step 6	1500-800	100	7
Step 7	800- Room temp	Natural cooling	1

4-6 units 12h

Step	Temp (°C)	Time (min)	Rate (°C/min)
Step 1	20-1000	295	4
Step 2	1200-1200	60	0
Step 3	1200-1500	100	3
Step 4	1500-1500	120	0
Step 5	1500-800	140	5
Step 6	800- Room temp	Natural cooling	/

7 and more units 15h

Step	Temp (°c)	Time (min)	Rate (°C/min)
Step 1	20-1000	393	3
Step 2	1200-1200	60	0
Step 3	1200-1500	150	2
Step 4	1500-1500	120	0
Step 5	1500-800	200	3.5
Step 6	800- Room temp	Natural cooling	/

Fast Sintering 1 to 3 units 3h

Step	Temp (°C)	Time (min)	Rate (°C/min)
Step 1	20-300	10	28
Step 2	300-300	5	0
Step 3	300-1200	30	30
Step 4	1200-1500	33	9
Step 5	1500-1500	60	0
Step 6	1500-800	35	20
Step 7	800- Room temp	Natural cooling	/

For dental mold & machine calibration

Features:

- Easy to mill, no wear to burs.
- No stick burs when operation, improve material utilization by 20%.
- Resistant to high temperature, no deformation in milling.

Thickness:

98mm: 10/12/14/16/18/20/22/25/30mm 95mm: 10/12/14/16/18/20/22/25mm

AG System: 13/20mm

Colors:

Blue / Green / White / Gray / Ecru

Applications:

Dental mold, Calibration of equipment

System:

Material characteristics:

Density(g/cm³): 0.89-0.93g/cm³ Melting point(°C): 116°C

Shore Hardness: 50-60

Ingot

Suitable for Ultra-thin Veneer

Features:

- Suitable for ultra-thin veneer.
- Accurate shades, simplifying the dyeing workflows.
- Natural effect with smooth surface & natural luster.

Types:

HT, LT

Indications:

Ultra-thin veneer, Veneer, Inlay, Onlay, Anterior crown, Posterior crown.

Colors:

A1, A2, A3, A3.5, A4, B1, B2, B3, B4, C1, C2, C3, C4, D2, D3, D4, BL1,BL2, BL3, BL4.

For Crown & bridge, Denture bases, etc.

Features:

- High toughness, not easy to break.
- Better bio-compatibility, no allergy to oral cavity.
- Appropriate hardness, no damage to original teeth.

Applications:

Fixed Dentures, Removable Dentures, Crown&bridge, Occlusal splint, etc.

Colors:

Natural / Pink / Beige / White

Thickness:

12-25mm

System:

For CAD/CAM production of crown, splint, etc.

Features:

- Better bio-compatibility
- Excellent comfort
- Good processing performance

Total PMMA Solution:

Туре	Color	Thickness
PMMA for removable prosthetic	Vita 16 colors+BL1-BL4 (Support for customizable colors)	98mm: 25mm/30mm/40mm 95mm: 25mm/30mm/40mm
Mulitlayer PMMA	Vita 16 colors+BL1-BL4	98mm: 12-30mm 95mm: 12-30mm AG System: 12-30mm Sirona System: C14, B40
Flexible PMMA	Vita 16 colors +BL1、BL2、BL3、A0、pink、clear	98mm: 12-22mm 95mm: 12-22mm AG System: 12-22mm
Clear PMMA	Clear	98mm: 10-30mm 95mm: 10-30mm AG System: 10-30mm
Monolayer PMMA	Vita 16 colors+BL1-BL4+Pink	98mm: 10-30mm 95mm: 10-30mm AG System: 10-30mm Sirona System: C14, B40

Titanium Disc

Titanium Alloy Disc & Pure Titanium Disc

Features:

- High-Purity, better processing performance, no damage to burs.
- · Light weight, comfortable to wear.
- High strength, high abrasion performance and anti-temperature performance.
- For PFM crown, Surgical guide, Implant abutment, etc.

Applications:

Metal crown & bridge, PFM crown & bridge, implant abutments, surgical guide, etc.

Type:

Titanium Alloy Disc & Pure Titanium Disc

Thickness:

10-25mm

System:

Lithium Disilicate

Natural translucency & color

Features:

- 400 MPa of high bending strength, not easy to break.
- Aesthetic effect with Natural color & high translucency.
- Easy to mill, stable edge processing.

Indications:

Veneer, Inlay, Onlay, Anterior crown, Posterior crown, Unit bridge(B40)

Colors:

A1, A2, A3, A3.5, A4, B1, B2, B3, B4, C1, C2, C3, C4, D2, D3, D4, BL1, BL2, BL3, BL4.

Size:

15.5*13*11mm(I12), 18*15*13mm(C14), 40*15*15mm(B40)

Types:

HT. LT

Product Parameter:

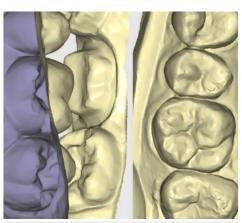
Bending strength:	400 MPa	Hardness:	550HV
Density:	2.3-2.6g/cm3		

GScan DP2

Intelligent-Intraoral Scanner

Features:

- Al-Powered Intelligent Dental Scanning
- Accuracy < 20µm
- Plug-and-Play


Product Parameter:

Size:	264mm*37mm*46mm	Interface:	USB 3.0
Output Format:	STL, PLY, OBJ	Power supply:	DC 12 V 2A
Accuracy:	20μm	Weight:	270g
Light source:	LED	Scan Depth:	23mm

GScan Z

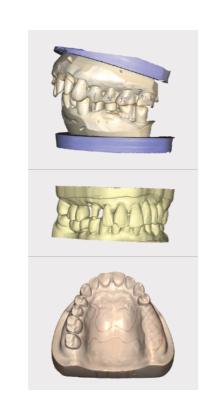
high-precision 3D scanner

High-precision Version:

suitable for customers with high requirements on scanner clarity.

GScan Z high-precision 3D scanner, equipped with 2*5.0MP lenses, can accurately capture edge details with 5µm accuracy, optimize the design process and improve design accuracy. With the new 2.0 version of software, the operation is simpler and more efficient. It is a powerful assistant for the digital transformation of dentistry in the new era.

Physical parameters


Scanning Accuracy:	<5µm	Data Interface:	USB3.0	
Camera Resolution:	2*5.0MP	Input Power supply:	24V	
Data Output Format:	STL、PLY、OBJ	Scanning Time:	Full arch scan 12s Full arch impression25s Occlusion 4s	
Equipment Weight:	9KG			
			All in one 18s Double-sided impression 48s	

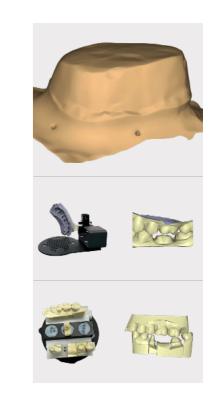
GScan Y

Higher Clarity, Higher Precision

Upgraded Version:

3.0MP, higher clarity, higher precision, realistic texture and color, simple operation, fast speed, meeting most customer needs.

GScan Y equipped with 2*3.0MP lenses, 8 micron accuracy, high cost performance, wide application range, simple operation, suitable for unsegmented, segmented, impression, post and core, texture, and implant scanning.


Physical parameters

Scanning Accuracy:	<8µm	Data Interface:	USB3.0
Camera Resolution:	2*3.0MP	Input Power supply:	24V
Data Output Format:	STL、PLY、OBJ	Scanning Time:	Full arch scan 12s
Equipment Weight:	9KG		Full arch impression25s Occlusion 4s All in one 18s Double-sided impression 48s

GScan X

Fast scanning

Basic Version:

1.8MP, Fast scanning speed: full dental arch scanning time 12s, wide application scenarios - suitable for unsegmented, segmented, impressions, post and core, texture, etc.

GScan X has the most user-friendly interface, fully open design and metal body to ensure the stability and durability of the scanner. It supports full module repair scanning, and the software strategy upgrade greatly improves the scanning integrity.

Physical parameters

Scanning Accuracy:	<10µm	Data Interface:	USB3.0
Camera Resolution:	2*1.8MP	Input Power supply:	24V
Data Output Format:	STL、PLY、OBJ	Scanning Time:	Full arch scan 12s Full arch impression25s
Equipment Weight:	9KG		Occlusion 4s All in one 18s Double-sided impression 48s

GSF 10

Lightest porcelain furnace on the market.

Intelligent Single/Dual-Curve Sintering

Lightest porcelain furnace on the market. Single-curve (P1-P25) and dual-curve modes (P26-P28) tailored for lithium disilicate crystallization, ensuring complete material transformation and aesthetic outcomes.

Al Precision Temp Control & Robust Structure

±0.5°C accuracy via AI algorithms. German-engineered quartz spiral chamber with densely wound heating wires and linear guides guarantees uniform temperature distribution and vibration-free durability.

Adjustable Vacuum & Multi-Functional Programs

Customizable vacuum pressure (85-102%) for advanced process control. 30 preset programs, including cleaning (P29) and silver wire calibration (P30), adaptable to complex clinical workflows.

Smart Touchscreen & Seamless Operation

7-inch smartphone-like touchscreen delivers intuitive control and program management, optimizing efficiency in dental labs.

Physical parameters

Touch Screen Size:	7" true color	Voltage:	220V 50/60HZ
Heating Rate:	Max 110°C/min	Power:	Max 1.5 KW
Maximum Temperature:	Max 1200°C	Furnace Core Platform:	Ф 86 mm
Maximum Temperature Holding Time:	Max 60 mins	Dimensions :	310(L)*205(W)*400(H) mm
Vacuum Level Setting Standards:	85%-102%	Net Weight: :	10.5Kg
Gross Weight:	27Kg (with Vacuum Pump 5kg)	Packing Size:	390(L)*510(W)*590(H) mm

GSF 90

Fast & Slow Integrated Zirconia Sintering Furnace

Dual-Mode Sintering Flexibility

Fast/Slow sintering modes (15 crowns in 90 minutes at fastest) adapt to lab or chairside workflows. Traditional slow sintering consumes only 8.5 kWh, balancing precision and efficiency.

Energy-Efficient Performance

Maximum 2 kW power with 2.3 kWh per cycle, enabling 5-7 hours of daily productivity, significantly reducing operational costs.

Intelligent Programs & Precision Control

24 preset sintering curves (4 pre-optimized), paired with imported silicon-molybdenum chamber for color accuracy. No empty firing required, supports 3 batches/day for mass production.

Aesthetic Excellence & Durability

Translucent, deformation-free restorations; night-mode sintering ensures next-day polishing readiness. Extended lifespan minimizes long-term procurement costs for dental labs.

Physical parameters

, ,			
Touch Screen Size:	7" true color	Combustion Chamber:	Ø110mm×130mm
Rated Power:	≤2KW	Dimensions:	370 (W) ×530 (L) ×780 (H) mm
Number of Programs:	24	Net Weight:	45KG
Operating Temperature:	≤1550°C	Packing Size:	480 (W) ×700 (L) ×970 (H) mm
Maximum Temperature:	1560°C	Gross Weight:	66KG
Heating Rod Quantity & Model:	4 Rod with 1850 Type High Purity Silicon Molybdenum Rod	Heating Rate:	0 ~ 30°C/min (0 ~ 500°C) 0 ~ 20°C/min (500 ~ 1200°C)

GSM 5D

Dry Milling

Industrial-Grade Precision & Full Servo Drive

Integrated high-performance castings, industrial ball screws, and imported electronic components ensure 24/7 reliability with micron-level accuracy, resistant to deformation under heavy loads.

High-Speed Spindle & Tool Management

60,000rpm spindle enables rapid milling. Drill wear monitoring and lifespan control system optimize tool usage and batch production consistency.

Five-Axis Linkage & Adaptive Machining

Five-axis linkage with B-axis 90° multi-angle processing and breakpoint resume function, ideal for complex dental prosthetics (e.g., zirconia crowns, bridges).

Intuitive Interface & Safety Assurance

Machine intelligent air-pressure protection and user-friendly interface enhance operational safety and efficiency for both technicians and novices.

Physical parameters

Axis number:	five-axis linkage	Voltage:
Miling method:	dry milling	Power:
Material size:	98mm diameter, 10-30mm thickness disc	Furnace
Spindle speed:	0~60000rpm/500W	Dimensi
Drive:	full servo motor	Weight:
Milling bur:	10 pcs (Diameter: 4mm)	Packing
Milling types:	inner crown, full crown, bridge, inlay, onlay, veneer, bracket	

Voltage:	220V 50/60HZ
Power:	Max 1.5 KW
Furnace Core Platform:	Φ 86 mm
Dimensions :	310(L)*205(W)*400(H) mm
Weight: :	165Kg
Packing Size:	390(L)*510(W)*590(H) mm

GSM 5W

Wet Milling

Five-Axis Vertical Precision Architecture

Industrial-grade ball screws and full servo drive system deliver micron-level accuracy, optimized for high-efficiency vertical five-axis milling of intricate dental prosthetics.

Multi-Material Versatility & Speed

Processes crowns, inlays, veneers, and interface bases (25 mins/unit) with lithium disilicate milling in 10-30 mins/unit, meeting diverse clinical restoration demands.

Titanium Processing & Adaptive Workflow

Enables 90° machining of pre-milled titanium blanks and breakpoint resume function, ensuring seamless production of complex geometries.

User-Centric Intelligent Interface

Intuitive interface design reduces operational complexity, accelerating workflow efficiency in high-volume dental labs.

Physical parameters

· · · / · · · · · · · · · · · · · · · ·	
Axis number:	five-axis linkage
Milling method:	wet milling
Stroke range:	X/Y/Z: 200-120-120 A: 360° B: -38°~+135°
Spindle speed:	0~60000rpm/500W
Drive:	full servo motor
Milling bur:	10 pcs (Diameter: 4mm)
Milling materials:	PMMA lithium disilicate pre-milled titanium blank

530*650*760mm
165KG
4.5-7.5bar
about 50L/min
1500W
220-230V AC, 50/60HZ

GSM 5 5-Axis Precision Complex Surface Machining

5-Axis Precision Machining & Optimized Efficiency

5-axis spatial tool positioning enables single-clamp multi-surface milling of full-anatomy crowns, custom abutments, and surgical guides. Optimized tool paths reduce idle time by 40%, with 30% higher material yield for zirconia/titanium alloys.

Multi-Axis Surface Finishing & Material Versatility

Optimal tool angles via multi-axis coordination achieve surface roughness ≤0.2µm, minimizing post-polishing. High-torque spindle handles diverse restorations from single crowns to full-arch frameworks.

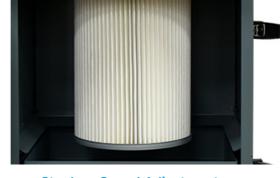
Digitalized Precision Medicine & Adaptive Control

Seamless CAD/CAM integration replicates patient-specific occlusal morphology. Breakpoint resume and B-axis 90° machining ensure error-free production of implant guides and bespoke prosthetics.

Industrial-Grade Human-Machine Synergy

Collision prevention system paired with GUI simplifies operation, supporting 24/7 uninterrupted production with minimal technician intervention.

Physical parameters


. Hyoroat para			
Axis number:	five-axis linkage	Size:	595*760*1650mm
Milling method:	wet milling	Processing accuracy:	±0.01mm
Stroke range:	X/Y/Z: 230-120-100 A: 360° B: -150°~+25°	Required air pressure:	4.5-7.5bar
Spindle speed:	0~60000rpm/1.8KW	Compressed air flow:	about 120L/min
Drive:	full servo motor	Power:	2.5KW
Milling burs:	16 pcs(Diameter: 6mm)	Power supply:	220-230V AC, 50/60HZ
Milling materials:	titanium disc, PMMA, lithium disilicate, pre-milled titanium blank	Weight:	360KG
Processable types:	veneer, inlay, onlay, full crown, implant upper restoration		

GSM V0

Vacuum Cleaner

Stepless Speed AdjustmentPulse automatic cleaning of powder

High-Efficiency Dust Extraction

High-torque motor generates ≥3000Pa suction power, rapidly removing zirconia debris to maintain ISO 14644-1 compliant clean zones around dental milling systems.

Targeted Airflow Design

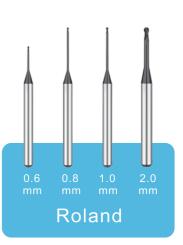
Anti-static ducts with cyclonic separation technology prevent zirconia dust accumulation, engineered for high-density ceramic particle characteristics.

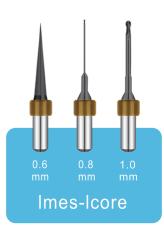
Medical-Grade Filtration

HEPA-grade filters (0.3µm@99.97% efficiency) capture nano-scale zirconia particles, eliminating airborne contamination risks.

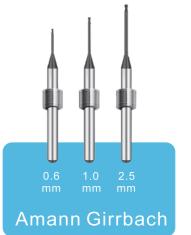
Silent Operation Technology

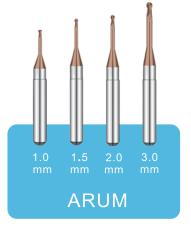
Brushless motor and multi-chamber noise reduction achieve ≤55dB(A) operation, enabling 24/7 workflow in dental clinics.


Physical parameters


Working voltage:	220V	Weight:	35KG
Working current:	5.5A	Dimensions (mm):	450*420*665
Power:	1200W	Pressure:	1600Pa
Rated frequency:	50HZ/60HZ	Air flow rate:	200m³/hour
Packing Size:	390(L)*510(W)*590(H) mm	Noise:	(dB) <60dB

Milling Burs





GSP T1

High-speed Printing, Accurate Reproduction

15min Temporary crowns

25min Implantation guides

21min

10min

Features:

- 18µm molding accuracy, using 9K ultra-high resolution flat exposure molding technology to restore model data with high accuracy
- 80mm/h forming speed, adopting advanced TSP release technology, the printing can be completed instantly and efficiently at the chairside
- · quick switch, adopts push-type locking material tank fixing method Switching resin is convenient and fast AI monitoring of internal water pressure, intelligent & safe.

Physical parameters

Build size:	153x78x180mm	Resolution:	8520x4320P
Molding accuracy	18um	Forming speed:	80mm/H (max)
Wavelength:	405nm	Light source life:	20000Hour
File Format:	STL	Adaptation system:	Win/macOS
Device size:	360x272x590mm	Equipment weight:	21kg

GSP T2

large molding area, high dimensional accuracy and stable performance

50min 8-10 half mouth

30min 10pcs Orthodontic models

Features:

- 30µm printing precision, 16K ultra-high resolution surface exposure molding technology, highly accurate restoration of model data.
- Ultraviolet (UV) blocking rate of 99% Reduce external light interference and stabilize printing results

Physical parameters

Build size:	211×118×200mm	Resolution:	15120×6230P
Molding accuracy	30um	Forming speed:	30mm/H (max)
Wavelength:	405nm	Light source life:	20000Hour
File Format:	STL	Adaptation system:	Win/macOS
Device size:	354x310x577mm	Equipment weight:	26kg

GSP X1

Leveled Up: Enhanced Curing Chamber with Minute-Graded Timing & Ultra-Precise Thermostat

automatic rotation360 from all angel curing without dead angles

Features:

- 5-7 times higher optical density, efficient curing, material diversity
- The equipment is from all angle rotation function, 360-degree full coverage curing without dead angles;
- 24 imported matrix lamp beads, uniform light intensity;
- The timer has been refined and upgraded, with the division value changed to 1 minute, which is more intuitive;

Physical parameters

Cured size:	180*100mm	Curing method:	Water rotation solidification
Timing range:	1-60/minute	Input voltage:	24V
Curing wavelength:	405nm	power:	60W
Optical intensity:	150mw/cm ²	Device size:	W220*D220*H325mm
		Net Weight:	5.5KG

GSclean

Steam jet cleaner

Features:

- 2300W of steam power, move stain powerfully.
- 50 mins of continuous steam, meets the need of dental labs .
- Hand held switch, labor-saving.
- Al monitoring of internal water pressure, intelligent & safe.

Product Parameter:

Outer dimension:	240x380x390mm	Boiler volume:	3L
Steam power:	2300W	Actual water:	2.2L
Steam drang:	2~5KG	Temperature:	120°C